Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 50(9): 2656-2668, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37067586

RESUMO

PURPOSE: Patients with known coronary artery disease (CAD) comprise a heterogenous population with varied clinical and imaging characteristics. Unsupervised machine learning can identify new risk phenotypes in an unbiased fashion. We use cluster analysis to risk-stratify patients with known CAD undergoing single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). METHODS: From 37,298 patients in the REFINE SPECT registry, we identified 9221 patients with known coronary artery disease. Unsupervised machine learning was performed using clinical (23), acquisition (17), and image analysis (24) parameters from 4774 patients (internal cohort) and validated with 4447 patients (external cohort). Risk stratification for all-cause mortality was compared to stress total perfusion deficit (< 5%, 5-10%, ≥10%). RESULTS: Three clusters were identified, with patients in Cluster 3 having a higher body mass index, more diabetes mellitus and hypertension, and less likely to be male, have dyslipidemia, or undergo exercise stress imaging (p < 0.001 for all). In the external cohort, during median follow-up of 2.6 [0.14, 3.3] years, all-cause mortality occurred in 312 patients (7%). Cluster analysis provided better risk stratification for all-cause mortality (Cluster 3: hazard ratio (HR) 5.9, 95% confidence interval (CI) 4.0, 8.6, p < 0.001; Cluster 2: HR 3.3, 95% CI 2.5, 4.5, p < 0.001; Cluster 1, reference) compared to stress total perfusion deficit (≥10%: HR 1.9, 95% CI 1.5, 2.5 p < 0.001; < 5%: reference). CONCLUSIONS: Our unsupervised cluster analysis in patients with known CAD undergoing SPECT MPI identified three distinct phenotypic clusters and predicted all-cause mortality better than ischemia alone.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Masculino , Feminino , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Aprendizado de Máquina não Supervisionado , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Teste de Esforço/métodos , Prognóstico
2.
J Nucl Cardiol ; 29(5): 2393-2403, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35672567

RESUMO

BACKGROUND: Accurately predicting which patients will have abnormal perfusion on MPI based on pre-test clinical information may help physicians make test selection decisions. We developed and validated a machine learning (ML) model for predicting abnormal perfusion using pre-test features. METHODS: We included consecutive patients who underwent SPECT MPI, with 20,418 patients from a multi-center (5 sites) international registry in the training population and 9019 patients (from 2 separate sites) in the external testing population. The ML (extreme gradient boosting) model utilized 30 pre-test features to predict the presence of abnormal myocardial perfusion by expert visual interpretation. RESULTS: In external testing, the ML model had higher prediction performance for abnormal perfusion (area under receiver-operating characteristic curve [AUC] 0.762, 95% CI 0.750-0.774) compared to the clinical CAD consortium (AUC 0.689) basic CAD consortium (AUC 0.657), and updated Diamond-Forrester models (AUC 0.658, p < 0.001 for all). Calibration (validation of the continuous risk prediction) was superior for the ML model (Brier score 0.149) compared to the other models (Brier score 0.165 to 0.198, all p < 0.001). CONCLUSION: ML can predict abnormal myocardial perfusion using readily available pre-test information. This model could be used to help guide physician decisions regarding non-invasive test selection.


Assuntos
Imagem de Perfusão do Miocárdio , Humanos , Aprendizado de Máquina , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Curva ROC , Tomografia Computadorizada de Emissão de Fóton Único/métodos
3.
J Nucl Med ; 65(11): 1795-1801, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362762

RESUMO

The Registry of Fast Myocardial Perfusion Imaging with Next-Generation SPECT (REFINE SPECT) has been expanded to include more patients and CT attenuation correction imaging. We present the design and initial results from the updated registry. Methods: The updated REFINE SPECT is a multicenter, international registry with clinical data and image files. SPECT images were processed by quantitative software and CT images by deep learning software detecting coronary artery calcium (CAC). Patients were followed for major adverse cardiovascular events (MACEs) (death, myocardial infarction, unstable angina, late revascularization). Results: The registry included scans from 45,252 patients from 13 centers (55.9% male, 64.7 ± 11.8 y). Correlating invasive coronary angiography was available for 3,786 (8.4%) patients. CT attenuation correction imaging was available for 13,405 patients. MACEs occurred in 6,514 (14.4%) patients during a median follow-up of 3.6 y (interquartile range, 2.5-4.8 y). Patients with a stress total perfusion deficit of 5% to less than 10% (unadjusted hazard ratio [HR], 2.42; 95% CI, 2.23-2.62) and a stress total perfusion deficit of at least 10% (unadjusted HR, 3.85; 95% CI, 3.56-4.16) were more likely to experience MACEs. Patients with a deep learning CAC score of 101-400 (unadjusted HR, 3.09; 95% CI, 2.57-3.72) and a CAC of more than 400 (unadjusted HR, 5.17; 95% CI, 4.41-6.05) were at increased risk of MACEs. Conclusion: The REFINE SPECT registry contains a comprehensive set of imaging and clinical variables. It will aid in understanding the value of SPECT myocardial perfusion imaging, leverage hybrid imaging, and facilitate validation of new artificial intelligence tools for improving prediction of adverse outcomes incorporating multimodality imaging.


Assuntos
Imagem de Perfusão do Miocárdio , Sistema de Registros , Tomografia Computadorizada de Emissão de Fóton Único , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Processamento de Imagem Assistida por Computador , Doença da Artéria Coronariana/diagnóstico por imagem
4.
EBioMedicine ; 99: 104930, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38168587

RESUMO

BACKGROUND: Myocardial perfusion imaging (MPI) is one of the most common cardiac scans and is used for diagnosis of coronary artery disease and assessment of cardiovascular risk. However, the large majority of MPI patients have normal results. We evaluated whether unsupervised machine learning could identify unique phenotypes among patients with normal scans and whether those phenotypes were associated with risk of death or myocardial infarction. METHODS: Patients from a large international multicenter MPI registry (10 sites) with normal perfusion by expert visual interpretation were included in this cohort analysis. The training population included 9849 patients, and external testing population 12,528 patients. Unsupervised cluster analysis was performed, with separate training and external testing cohorts, to identify clusters, with four distinct phenotypes. We evaluated the clinical and imaging features of clusters and their associations with death or myocardial infarction. FINDINGS: Patients in Clusters 1 and 2 almost exclusively underwent exercise stress, while patients in Clusters 3 and 4 mostly required pharmacologic stress. In external testing, the risk for Cluster 4 patients (20.2% of population, unadjusted hazard ratio [HR] 6.17, 95% confidence interval [CI] 4.64-8.20) was higher than the risk associated with pharmacologic stress (HR 3.03, 95% CI 2.53-3.63), or previous myocardial infarction (HR 1.82, 95% CI 1.40-2.36). INTERPRETATION: Unsupervised learning identified four distinct phenotypes of patients with normal perfusion scans, with a significant proportion of patients at very high risk of myocardial infarction or death. Our results suggest a potential role for patient phenotyping to improve risk stratification of patients with normal imaging results. FUNDING: This work was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R35HL161195 to PS]. The REFINE SPECT database was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R01HL089765 to PS]. MCW was supported by the British Heart Foundation [FS/ICRF/20/26002].


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Perfusão , Prognóstico , Fatores de Risco , Aprendizado de Máquina não Supervisionado , Estudos Retrospectivos
5.
NPJ Digit Med ; 6(1): 78, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127660

RESUMO

Standard clinical interpretation of myocardial perfusion imaging (MPI) has proven prognostic value for predicting major adverse cardiovascular events (MACE). However, personalizing predictions to a specific event type and time interval is more challenging. We demonstrate an explainable deep learning model that predicts the time-specific risk separately for all-cause death, acute coronary syndrome (ACS), and revascularization directly from MPI and 15 clinical features. We train and test the model internally using 10-fold hold-out cross-validation (n = 20,418) and externally validate it in three separate sites (n = 13,988) with MACE follow-ups for a median of 3.1 years (interquartile range [IQR]: 1.6, 3.6). We evaluate the model using the cumulative dynamic area under receiver operating curve (cAUC). The best model performance in the external cohort is observed for short-term prediction - in the first six months after the scan, mean cAUC for ACS and all-cause death reaches 0.76 (95% confidence interval [CI]: 0.75, 0.77) and 0.78 (95% CI: 0.78, 0.79), respectively. The model outperforms conventional perfusion abnormality measures at all time points for the prediction of death in both internal and external validations, with improvement increasing gradually over time. Individualized patient explanations are visualized using waterfall plots, which highlight the contribution degree and direction for each feature. This approach allows the derivation of individual event probability as a function of time as well as patient- and event-specific risk explanations that may help draw attention to modifiable risk factors. Such a method could help present post-scan risk assessments to the patient and foster shared decision-making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA