RESUMO
Given the recent surge in SARS-CoV-2 Omicron infections, we performed a quantitative PCR screening survey during June 28-29, 2022, in Stockholm, Sweden, to investigate SARS-CoV-2 point prevalence in a group with high exposure risk. Results showed SARS-CoV-2 infection in 2.3% of healthcare workers who were asymptomatic at time of sampling.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Teste para COVID-19 , Pessoal de Saúde , Humanos , Suécia/epidemiologiaRESUMO
BACKGROUND: Emerging data support detectable immune responses for months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, but it is not yet established to what degree and for how long protection against reinfection lasts. METHODS: We investigated SARS-CoV-2-specific humoral and cellular immune responses more than 8 months post-asymptomatic, mild and severe infection in a cohort of 1884 healthcare workers (HCW) and 51 hospitalized COVID-19 patients. Possible protection against SARS-CoV-2 reinfection was analyzed by a weekly 3-month polymerase chain reaction (PCR) screening of 252 HCW that had seroconverted 7 months prior to start of screening and 48 HCW that had remained seronegative at multiple time points. RESULTS: All COVID-19 patients and 96% (355/370) of HCW who were anti-spike IgG positive at inclusion remained anti-spike IgG positive at the 8-month follow-up. Circulating SARS-CoV-2-specific memory T cell responses were detected in 88% (45/51) of COVID-19 patients and in 63% (233/370) of seropositive HCW. The cumulative incidence of PCR-confirmed SARS-CoV-2 infection was 1% (3/252) among anti-spike IgG positive HCW (0.13 cases per 100 weeks at risk) compared to 23% (11/48) among anti-spike IgG negative HCW (2.78 cases per 100 weeks at risk), resulting in a protective effect of 95.2% (95% CI 81.9%-99.1%). CONCLUSIONS: The vast majority of anti-spike IgG positive individuals remain anti-spike IgG positive for at least 8 months regardless of initial COVID-19 disease severity. The presence of anti-spike IgG antibodies is associated with a substantially reduced risk of reinfection up to 9 months following asymptomatic to mild COVID-19.
Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/imunologia , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/imunologia , Reinfecção , Adulto , Anticorpos Antivirais/imunologia , Infecções Assintomáticas , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Células T de Memória , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Fatores de TempoRESUMO
BACKGROUND: COVID-19 disease severity and need for intensive care has been associated with profound immune disturbances in which interleukin 6 (IL-6) is central. IL-6 signals through two pathways: classical IL-6 signalling with C-reactive protein (CRP) as a product is pivotal in the acute immune response against pathogens while IL-6 trans-signalling is involved in prolonged inflammation. We measured biomarkers of the IL-6 classical and trans-signalling pathways in patients with moderate or severe COVID-19 in the first wave of the COVID-19 pandemic. METHOD: In a longitudinal cohort study including patients admitted to Danderyd hospital, Stockholm, Sweden, with COVID-19 (n = 112), plasma IL-6 mirroring activity in both pathways, CRP as marker of classical signalling and the soluble IL-6 receptor (sIL-6R) and soluble glycoprotein 130 (sgp130) as markers of trans-signalling were analysed at baseline. Potential differences in biomarker levels between groups of moderate and severe COVID-19 defined by care level, level of respiratory support and one-month mortality was analysed, as was correlations between biomarkers. In addition, levels 4 months after hospital admission were compared to those at baseline. RESULTS: Levels of IL-6 and CRP were increased in severe COVID-19 whereas IL-6 trans-signalling markers (sIL-6R, sgp130) did not differ between the groups. CRP correlated positively with IL-6 in all patients while correlation with IL-6 could not be demonstrated for sIL-6R and sgp130 in either group. Levels of IL-6, CRP and sIL-6R were significantly decreased after 4 months whereas sgp130 levels increased. CONCLUSION: Classical signalling is the dominating IL-6 pathway in moderate-severe COVID-19.
Assuntos
COVID-19 , Interleucina-6 , Biomarcadores , Proteína C-Reativa , Receptor gp130 de Citocina/metabolismo , Humanos , Hiperplasia , Estudos Longitudinais , Pandemias , Receptores de Interleucina-6/metabolismo , SARS-CoV-2 , Suécia/epidemiologiaRESUMO
Patients with chronic kidney disease (CKD) are at high risk of severe complications from COVID-19 and functional monocyte disturbances have been implicated to play a role. Our objective was to analyse the association between kidney function and monocyte modulatory factors, with risk of mortality in patients with COVID-19. Hospitalized patients with COVID-19 (n = 110) were included and in-hospital mortality was analysed with unadjusted and adjusted multiple logistic regression analysis. Plasma levels of monocyte chemoattractant factors (MIP-1α, MCP-1, IL-6) and a monocyte immune modulator (sCD14) were analysed and correlated to kidney function and risk of mortality. Monocyte modulatory factors were also determined in CKD patients without infection (disease controls) and in healthy subjects. Patients who died in hospital were more often in CKD stages 3-5, with lower estimated glomerular filtration rate (eGFR) and had significantly higher MIP-1α and IL-6 levels than survivors. In multiple regression analyses adjusted for age, sex and eGFR, both high MCP-1 and high MIP-1α were significantly associated with risk of in-hospital mortality. Apart from impaired kidney function, also the concentrations of MCP-1 and MIP-1α add important prognostic information in hospitalized patients with COVID-19. These data provide an increased understanding of the impact of monocyte modulators in patients with COVID-19 and normal or impaired kidney function, and warrant consideration in the pursuit of new effective therapies.
Assuntos
COVID-19 , Insuficiência Renal Crônica , Humanos , Monócitos , Quimiocina CCL3 , Interleucina-6 , Insuficiência Renal Crônica/terapia , RimRESUMO
OBJECTIVE: Patients with coronavirus disease 2019 (COVID-19) have a high rate of thrombosis. We hypothesized that severe acute respiratory syndrome coronavirus 2 infection leads to induction of TF (tissue factor) expression and increased levels of circulating TF-positive extracellular vesicles (EV) that may drive thrombosis. Approach and Results: We measured levels of plasma EV TF activity in 100 patients with COVID-19 with moderate and severe disease and 28 healthy controls. Levels of EV TF activity were significantly higher in patients with COVID-19 compared with controls. In addition, levels of EV TF activity were associated with disease severity and mortality. Finally, levels of EV TF activity correlated with several plasma markers, including D-dimer, which has been shown to be associated with thrombosis in patients with COVID-19. CONCLUSIONS: Our results indicate that severe acute respiratory syndrome coronavirus 2 infection induces the release of TF-positive EVs into the circulation that are likely to contribute to thrombosis in patients with COVID-19. EV TF activity was also associated with severity and mortality.
Assuntos
COVID-19/sangue , COVID-19/complicações , Vesículas Extracelulares/metabolismo , Idoso , Anticoagulantes/uso terapêutico , COVID-19/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Índice de Gravidade de Doença , Trombose/prevenção & controle , Trombose/virologiaRESUMO
OBJECTIVE: The full spectrum of coronavirus disease 2019 (COVID-19) infection ranges from asymptomatic to acute respiratory distress syndrome, characterized by hyperinflammation and thrombotic microangiopathy. The pathogenic mechanisms are poorly understood, but emerging evidence suggest that excessive neutrophil extracellular trap (NET) formation plays a key role in COVID-19 disease progression. Here, we evaluate if circulating markers of NETs are associated with COVID-19 disease severity and clinical outcome, as well as to markers of inflammation and in vivo coagulation and fibrinolysis. Approach and Results: One hundred six patients with COVID-19 with moderate to severe disease were enrolled shortly after hospital admission and followed for 4 months. Acute and convalescent plasma samples as well as plasma samples from 30 healthy individuals were assessed for markers of NET formation: citrullinated histone H3, cell-free DNA, NE (neutrophil elastase). We found that all plasma levels of NET markers were elevated in patients with COVID-19 relative to healthy controls, that they were associated with respiratory support requirement and short-term mortality, and declined to those found in healthy individuals 4 months post-infection. The levels of the NET markers also correlated with white blood cells, neutrophils, inflammatory cytokines, and C-reactive protein, as well as to markers of in vivo coagulation, fibrinolysis, and endothelial damage. CONCLUSIONS: Our findings suggest a role of NETs in COVID-19 disease progression, implicating their contribution to an immunothrombotic state. Further, we observed an association between circulating markers of NET formation and clinical outcome, demonstrating a potential role of NET markers in clinical decision-making, as well as for NETs as targets for novel therapeutic interventions in COVID-19.
Assuntos
COVID-19/sangue , COVID-19/complicações , Armadilhas Extracelulares/metabolismo , Idoso , Biomarcadores/sangue , Síndrome da Liberação de Citocina/sangue , Progressão da Doença , Endotélio Vascular/metabolismo , Feminino , Fibrinólise , Humanos , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Trombose/virologiaRESUMO
BACKGROUND: Chronic kidney disease (CKD) is a recognized risk factor for severe complications in COVID-19. Our objective was to analyze the association between kidney function / T and B lymphocyte modulatory factors and risk of mortality in COVID-19 patients. METHODS: In-hospital and 30-day mortality were analyzed in COVID-19 patients (n = 110). Plasma levels of selected T and B cell modulators were analyzed and correlated to mortality risk. A subgroup of sex- and eGFR-matched COVID-19 patients was compared to CKD patients without infection and healthy subjects. RESULTS: COVID-19 patients who died in hospital and within 30 days had significantly higher BAFF and sCD25 plasma levels than survivors. In logistic regression models patients with high BAFF, sCD25 and sPD-L1 levels had significantly higher risk of both in-hospital and 30-day mortality while there was no association to eGFR. In the subgroup analysis, a higher level of BAFF, IFN-α, sCD25, sPD-L1 and a lower level of sCD40L was observed in COVID-19 patients compared to the CKD group with corresponding kidney function. CONCLUSIONS: We demonstrate that kidney function and concentrations of BAFF, sCD25 and PD-L1, independent of previously recognized risk factors; age, male gender, and leukocytosis are associated with risk of in-hospital and 30-day mortality in patients with COVID-19. These data indicate the significance of adaptive immune system modulators in COVID-19 and motivate further analysis to identify new potential prognostic and therapeutic approaches.
Assuntos
COVID-19 , Insuficiência Renal Crônica , Linfócitos B , Humanos , Rim , Masculino , PrognósticoAssuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Mucosa , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Mucosa/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , COVID-19/sangue , COVID-19/genética , COVID-19/imunologia , COVID-19/virologiaRESUMO
The main entry receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is angiotensin-converting enzyme 2 (ACE2). SARS-CoV-2 interactions with ACE2 may increase ectodomain shedding but consequences for the renin-angiotensin system and pathology in Coronavirus disease 2019 (COVID-19) remain unclear. We measured soluble ACE2 (sACE2) and sACE levels by enzyme-linked immunosorbent assay in 114 hospital-treated COVID-19 patients compared with 10 healthy controls; follow-up samples after four months were analyzed for 58 patients. Associations between sACE2 respectively sACE and risk factors for severe COVID-19, outcome, and inflammatory markers were investigated. Levels of sACE2 were higher in COVID-19 patients than in healthy controls, median 5.0 (interquartile range 2.8-11.8) ng/ml versus 1.4 (1.1-1.6) ng/ml, p < .0001. sACE2 was higher in men than women but was not affected by other risk factors for severe COVID-19. sACE2 decreased to 2.3 (1.6-3.9) ng/ml at follow-up, p < .0001, but remained higher than in healthy controls, p = .012. sACE was marginally lower during COVID-19 compared with at follow-up, 57 (45-70) ng/ml versus 72 (52-87) ng/ml, p = .008. Levels of sACE2 and sACE did not differ depending on survival or disease severity. sACE2 during COVID-19 correlated with von Willebrand factor, factor VIII and D-dimer, while sACE correlated with interleukin 6, tumor necrosis factor α, and plasminogen activator inhibitor 1. Conclusions: sACE2 was transiently elevated in COVID-19, likely due to increased shedding from infected cells. sACE2 and sACE during COVID-19 differed in correlations with markers of inflammation and endothelial dysfunction, suggesting release from different cell types and/or vascular beds.
Assuntos
Enzima de Conversão de Angiotensina 2/sangue , COVID-19/sangue , Adulto , Idoso , Biomarcadores/sangue , Feminino , Seguimentos , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Peptidil Dipeptidase A/sangue , Sistema Renina-Angiotensina , Fatores de Risco , SARS-CoV-2Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Imunoglobulina A , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Imunoglobulina A/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas do Envelope ViralAssuntos
COVID-19 , Tromboembolia Venosa , Fator V , Humanos , SARS-CoV-2 , Índice de Gravidade de DoençaRESUMO
The pathophysiology behind neurological and cognitive sequelae of COVID-19 may be related to dysfunction of the blood-brain barrier (BBB) and previous research indicate transient neuronal injury and glial activation. The aim of this study was to investigate if COVID-19 is related to increased BBB permeability by analyzing leakage of biomarkers such as astrocyte-derived extracellular vesicles (EVs) and S100B. We also investigated whether levels of these biomarkers correlated with self-reported symptoms that persisted > 2 months. The samples in this 1-year follow-up study came from an ongoing longitudinal study of unvaccinated patients hospitalized for COVID-19 at Danderyd University Hospital, Stockholm, Sweden, between April and June 2020. Blood samples were collected at baseline and 4, 8, and 12 months after hospitalization. Information on self-reported clinical symptoms was collected at follow-up visits. A total of 102 patients were enrolled, and 47 completed all follow-up measurements. Peak levels of both biomarkers were observed at 4 months in the subset of 55 patients who were measured at this timepoint. At 12 months, the biomarkers had returned to baseline levels. The biomarkers were not correlated with any of the long-term self-reported symptoms. COVID-19 is associated with transient increased BBB permeability, shown by elevated levels of astrocyte biomarkers in plasma. However, these levels return to baseline 12 months post-infection and do not correlate with long-term symptoms. Further research is needed to unravel the underlying mechanisms causing long-term symptoms in COVID-19 patients.
Assuntos
Biomarcadores , Barreira Hematoencefálica , COVID-19 , Humanos , Barreira Hematoencefálica/metabolismo , COVID-19/sangue , COVID-19/metabolismo , Biomarcadores/sangue , Masculino , Feminino , Estudos Longitudinais , Pessoa de Meia-Idade , Idoso , Adulto , SARS-CoV-2/isolamento & purificação , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Vesículas Extracelulares/metabolismo , Suécia/epidemiologia , Astrócitos/metabolismo , Permeabilidade , SeguimentosRESUMO
BACKGROUND: More than a year after recovering from COVID-19, a large proportion of individuals, many of whom work in the healthcare sector, still report olfactory dysfunctions. However, olfactory dysfunction was common already before the COVID-19 pandemic, making it necessary to also consider the existing baseline prevalence of olfactory dysfunction. To establish the adjusted prevalence of COVID-19 related olfactory dysfunction, we assessed smell function in healthcare workers who had contracted COVID-19 during the first wave of the pandemic using psychophysical testing. METHODS: Participants were continuously tested for SARS-CoV-2 IgG antibodies since the beginning of the pandemic. To assess the baseline rate of olfactory dysfunction in the population and to control for the possibility of skewed recruitment of individuals with prior olfactory dysfunction, consistent SARS-CoV-2 IgG naïve individuals were tested as a control group. RESULTS: Fifteen months after contracting COVID-19, 37% of healthcare workers demonstrated a quantitative reduction in their sense of smell, compared to only 20% of the individuals in the control group. Fifty-one percent of COVID-19-recovered individuals reported qualitative symptoms, compared to only 5% in the control group. In a follow-up study 2.6 years after COVID-19 diagnosis, 24% of all tested recovered individuals still experienced parosmia. CONCLUSIONS: In summary, 65% of healthcare workers experienced parosmia/hyposmia 15 months after contracting COVID-19. When compared to a control group, the prevalence of olfactory dysfunction in the population increased by 41 percentage points. Parosmia symptoms were still lingering two-and-a half years later in 24% of SARS-CoV-2 infected individuals. Given the amount of time between infection and testing, it is possible that the olfactory problems may not be fully reversible in a plurality of individuals.
Assuntos
COVID-19 , Pessoal de Saúde , Transtornos do Olfato , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/complicações , Masculino , Feminino , Transtornos do Olfato/epidemiologia , Transtornos do Olfato/etiologia , Transtornos do Olfato/virologia , Adulto , Prevalência , Estudos de Casos e Controles , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Olfato/fisiologiaRESUMO
An important aspect of microbiological surveillance is the ability to access live viruses for microneutralization assays, which enables the study of viral characteristics and mechanisms in vitro and production of positive controls for diagnostic methods. During the COVID-19 pandemic, the Public Health Agency of Sweden established a protocol for the rapid collection of clinical samples and subsequent isolation of novel virus variants.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Suécia , Manejo de Espécimes/métodosRESUMO
Autoantibodies have been shown to be implied in COVID-19 but the emerging autoantibody repertoire remains largely unexplored. We investigated the new-onset autoantibody repertoire in 525 healthcare workers and hospitalized COVID-19 patients at five time points over a 16-month period in 2020 and 2021 using proteome-wide and targeted protein and peptide arrays. Our results show that prevalent new-onset autoantibodies against a wide range of antigens emerged following SARS-CoV-2 infection in relation to pre-infectious baseline samples and remained elevated for at least 12 months. We found an increased prevalence of new-onset autoantibodies after severe COVID-19 and demonstrated associations between distinct new-onset autoantibodies and neuropsychiatric symptoms post-COVID-19. Using epitope mapping, we determined the main epitopes of selected new-onset autoantibodies, validated them in independent cohorts of neuro-COVID and pre-pandemic healthy controls, and identified sequence similarities suggestive of molecular mimicry between main epitopes and the conserved fusion peptide of the SARS-CoV-2 Spike glycoprotein. Our work describes the complexity and dynamics of the autoantibody repertoire emerging with COVID-19 and supports the need for continued analysis of the new-onset autoantibody repertoire to elucidate the mechanisms of the post-COVID-19 condition.
Assuntos
Autoanticorpos , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/epidemiologia , Autoanticorpos/imunologia , Autoanticorpos/sangue , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Mapeamento de Epitopos , Glicoproteína da Espícula de Coronavírus/imunologia , Idoso , Epitopos/imunologia , Pessoal de Saúde , Índice de Gravidade de Doença , Mimetismo Molecular/imunologiaRESUMO
Introduction: Several novel vaccine platforms aim at mucosal immunity in the respiratory tract to block SARS-CoV-2 transmission. Standardized methods for mucosal sample collection and quantification of mucosal antibodies are therefore urgently needed for harmonized comparisons and interpretations across mucosal vaccine trials and real-world data. Methods: Using commercial electrochemiluminescence antibody panels, we compared SARS-CoV-2 spike-specific IgA and IgG in paired saliva, nasal secretions, and serum from 1048 healthcare workers with and without prior infection. Results: Spike-specific IgA correlated well in nasal secretions and saliva (r>0.65, p<0.0001), but the levels were more than three-fold higher in nasal secretions as compared to in saliva (p<0.01). Correlations between the total population of spike-specific IgA and spike-specific secretory IgA (SIgA) were significantly stronger (p<0.0001) in nasal secretions (r=0.96, p<0.0001) as opposed to in saliva (r=0.77, p<0.0001), and spike-specific IgA correlated stronger (p<0.0001) between serum and saliva (r=0.73, p<0.001) as opposed to between serum and nasal secretions (r=0.54, p<0.001), suggesting transudation of monomeric spike specific IgA from the circulation to saliva. Notably, spike-specific SIgA had a markedly higher SARS-CoV-2 variant cross-binding capacity as compared to the total population of spike specific IgA and IgG in both nasal secretions, saliva and serum, (all p<0.0001), which emphasizes the importance of taking potential serum derived monomeric IgA into consideration when investigating mucosal immune responses. Discussion: Taken together, although spike-specific IgA can be reliably measured in both nasal secretions and saliva, our findings imply an advantage of higher levels and likely also a larger proportion of SIgA in nasal secretions as compared to in saliva. We further corroborate the superior variant cross-binding capacity of SIgA in mucosal secretions, highlighting the potential protective benefits of a vaccine targeting the upper respiratory tract.
Assuntos
COVID-19 , Vacinas , Humanos , Saliva , SARS-CoV-2 , Imunoglobulina A Secretora , Imunoglobulina GRESUMO
Vaccination offers protection against severe COVID-19 caused by SARS-CoV-2 omicron but is less effective against infection. Characteristics such as serum antibody titer correlation to protection, viral abundance and clearance of omicron infection in vaccinated individuals are scarce. We present a 4-week twice-weekly SARS-CoV-2 qPCR screening in 368 triple vaccinated healthcare workers. Spike-specific IgG levels, neutralization titers and mucosal spike-specific IgA-levels were determined at study start and qPCR-positive participants were sampled repeatedly for two weeks. 81 (cumulative incidence 22%) BA.1, BA.1.1 and BA.2 infections were detected. High serum antibody titers are shown to be protective against infection (p < 0.01), linked to reduced viral load (p < 0.01) and time to viral clearance (p < 0.05). Pre-omicron SARS-CoV-2 infection is independently associated to increased protection against omicron, largely mediated by mucosal spike specific IgA responses (nested models lr test p = 0.02 and 0.008). Only 10% of infected participants remain asymptomatic through the course of their infection. We demonstrate that high levels of vaccine-induced spike-specific WT antibodies are linked to increased protection against infection and to reduced viral load if infected, and suggest that the additional protection offered by pre-omicron SARS-CoV-2 infection largely is mediated by mucosal spike-specific IgA.
Assuntos
Infecções Irruptivas , COVID-19 , Humanos , Carga Viral , COVID-19/prevenção & controle , SARS-CoV-2 , Pessoal de Saúde , Imunoglobulina A , Anticorpos Antivirais , Anticorpos NeutralizantesRESUMO
Background: Circulating procoagulant extracellular vesicles (EVs) are increased in diseases, such as cancer, sepsis, and COVID-19. EV tissue factor (TF) activity is associated with disseminated intravascular coagulation in sepsis and venous thrombosis in patients with pancreatic cancer and COVID-19. EVs are commonly isolated by centrifugation at â¼20,000 g. Objectives: In this study, we analyzed the TF activity of 2 EV populations enriched for large and small EVs in patients with either sepsis, pancreatic cancer, or COVID-19. Methods: EVs were isolated from plasma by sequential centrifugation at 20,000 g (large EVs, LEVs) and then 100,000 g (small EVs, SEVs). We analyzed EVs from plasma prepared from whole blood samples from healthy individuals with or without lipopolysaccharide (LPS) stimulation as well as EVs from plasma samples from patients with either sepsis, pancreatic cancer, or COVID-19. TF-dependent (EV-TF activity) and TF-independent factor Xa (FXa) generation of the EVs was measured. Results: LPS increased EV-TF activity in LEVs but not SEVs. Similarly, in 2 patients with sepsis who had EV-TF activity above the background of the assay we observed EV-TF activity in LEVs but not SEVs. Patients with pancreatic cancer or COVID-19 had circulating EV-TF activity in both LEVs and SEVs. Conclusion: We recommend that EVs are isolated from plasma from patients by centrifugation at 100,000 g rather than 20,000 g to obtain a more accurate measure of levels of circulating EV-TF activity.