Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
EMBO J ; 43(5): 754-779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287189

RESUMO

Tank-binding kinase 1 (TBK1) is a Ser/Thr kinase that is involved in many intracellular processes, such as innate immunity, cell cycle, and apoptosis. TBK1 is also important for phosphorylating the autophagy adaptors that mediate the selective autophagic removal of damaged mitochondria. However, the mechanism by which PINK1-Parkin-mediated mitophagy activates TBK1 remains largely unknown. Here, we show that the autophagy adaptor optineurin (OPTN) provides a unique platform for TBK1 activation. Both the OPTN-ubiquitin and the OPTN-pre-autophagosomal structure (PAS) interaction axes facilitate assembly of the OPTN-TBK1 complex at a contact sites between damaged mitochondria and the autophagosome formation sites. At this assembly point, a positive feedback loop for TBK1 activation is initiated that accelerates hetero-autophosphorylation of the protein. Expression of monobodies engineered here to bind OPTN impaired OPTN accumulation at contact sites, as well as the subsequent activation of TBK1, thereby inhibiting mitochondrial degradation. Taken together, these data show that a positive and reciprocal relationship between OPTN and TBK1 initiates autophagosome biogenesis on damaged mitochondria.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Membrana Transportadoras , Membranas Mitocondriais , Mitofagia , Humanos , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
2.
Plant Cell ; 36(6): 2410-2426, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38531669

RESUMO

DNA repair proteins can be recruited by their histone reader domains to specific epigenomic features, with consequences on intragenomic mutation rate variation. Here, we investigated H3K4me1-associated hypomutation in plants. We first examined 2 proteins which, in plants, contain Tudor histone reader domains: PRECOCIOUS DISSOCIATION OF SISTERS 5 (PDS5C), involved in homology-directed repair, and MUTS HOMOLOG 6 (MSH6), a mismatch repair protein. The MSH6 Tudor domain of Arabidopsis (Arabidopsis thaliana) binds to H3K4me1 as previously demonstrated for PDS5C, which localizes to H3K4me1-rich gene bodies and essential genes. Mutations revealed by ultradeep sequencing of wild-type and msh6 knockout lines in Arabidopsis show that functional MSH6 is critical for the reduced rate of single-base substitution (SBS) mutations in gene bodies and H3K4me1-rich regions. We explored the breadth of these mechanisms among plants by examining a large rice (Oryza sativa) mutation data set. H3K4me1-associated hypomutation is conserved in rice as are the H3K4me1-binding residues of MSH6 and PDS5C Tudor domains. Recruitment of DNA repair proteins by H3K4me1 in plants reveals convergent, but distinct, epigenome-recruited DNA repair mechanisms from those well described in humans. The emergent model of H3K4me1-recruited repair in plants is consistent with evolutionary theory regarding mutation modifier systems and offers mechanistic insight into intragenomic mutation rate variation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reparo do DNA , Histonas , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Histonas/genética , Lisina/análogos & derivados , Mutação/genética , Oryza/genética , Oryza/metabolismo , Proteínas MutS/genética , Proteínas MutS/metabolismo
3.
Nat Chem Biol ; 19(3): 311-322, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36316570

RESUMO

Targeted protein degradation through chemical hijacking of E3 ubiquitin ligases is an emerging concept in precision medicine. The ubiquitin code is a critical determinant of the fate of substrates. Although two E3s, CRL2VHL and CRL4CRBN, frequently assemble with proteolysis-targeting chimeras (PROTACs) to attach lysine-48 (K48)-linked ubiquitin chains, the diversity of the ubiquitin code used for chemically induced degradation is largely unknown. Here we show that the efficacy of cIAP1-targeting degraders depends on the K63-specific E2 enzyme UBE2N. UBE2N promotes degradation of cIAP1 induced by cIAP1 ligands and subsequent cancer cell apoptosis. Mechanistically, UBE2N-catalyzed K63-linked ubiquitin chains facilitate assembly of highly complex K48/K63 and K11/K48 branched ubiquitin chains, thereby recruiting p97/VCP, UCH37 and the proteasome. Degradation of neo-substrates directed by cIAP1-recruiting PROTACs also depends on UBE2N. These results reveal an unexpected role for K63-linked ubiquitin chains and UBE2N in degrader-induced proteasomal degradation and demonstrate the diversity of the ubiquitin code used for chemical hijacking.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise
4.
Nucleic Acids Res ; 51(14): 7465-7479, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395404

RESUMO

Extremely diverse libraries are essential for effectively selecting functional peptides or proteins, and mRNA display technology is a powerful tool for generating such libraries with over 1012-1013 diversity. Particularly, the protein-puromycin linker (PuL)/mRNA complex formation yield is determining for preparing the libraries. However, how mRNA sequences affect the complex formation yield remains unclear. To study the effects of N-terminal and C-terminal coding sequences on the complex formation yield, puromycin-attached mRNAs containing three random codons after the start codon (32768 sequences) or seven random bases next to the amber codon (6480 sequences) were translated. Enrichment scores were calculated by dividing the appearance rate of every sequence in protein-PuL/mRNA complexes by that in total mRNAs. The wide range of enrichment scores (0.09-2.10 for N-terminal and 0.30-4.23 for C-terminal coding sequences) indicated that the N-terminal and C-terminal coding sequences strongly affected the complex formation yield. Using C-terminal GGC-CGA-UAG-U sequences, which resulted in the highest enrichment scores, we constructed highly diverse libraries of monobodies and macrocyclic peptides. The present study provides insights into how mRNA sequences affect the protein/mRNA complex formation yield and will accelerate the identification of functional peptides and proteins involved in various biological processes and having therapeutic applications.


Assuntos
Códon de Terminação , Biblioteca de Peptídeos , Peptídeos/metabolismo , Proteínas/genética , Puromicina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Nucleic Acids Res ; 51(19): 10364-10374, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37718728

RESUMO

The N-terminal tails of histones protrude from the nucleosome core and are target sites for histone modifications, such as acetylation and methylation. Histone acetylation is considered to enhance transcription in chromatin. However, the contribution of the histone N-terminal tail to the nucleosome transcription by RNA polymerase II (RNAPII) has not been clarified. In the present study, we reconstituted nucleosomes lacking the N-terminal tail of each histone, H2A, H2B, H3 or H4, and performed RNAPII transcription assays. We found that the N-terminal tail of H3, but not H2A, H2B and H4, functions in RNAPII pausing at the SHL(-5) position of the nucleosome. Consistently, the RNAPII transcription assay also revealed that the nucleosome containing N-terminally acetylated H3 drastically alleviates RNAPII pausing at the SHL(-5) position. In addition, the H3 acetylated nucleosome produced increased amounts of the run-off transcript. These results provide important evidence that the H3 N-terminal tail plays a role in RNAPII pausing at the SHL(-5) position of the nucleosome, and its acetylation directly alleviates this nucleosome barrier.


Assuntos
Histonas , Nucleossomos , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , RNA Polimerase II/genética , Acetilação , Cromatina
6.
Nucleic Acids Res ; 50(21): 12527-12542, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36420895

RESUMO

Ubiquitin-like with PHD and RING finger domain-containing protein 1 (UHRF1)-dependent DNA methylation is essential for maintaining cell fate during cell proliferation. Developmental pluripotency-associated 3 (DPPA3) is an intrinsically disordered protein that specifically interacts with UHRF1 and promotes passive DNA demethylation by inhibiting UHRF1 chromatin localization. However, the molecular basis of how DPPA3 interacts with and inhibits UHRF1 remains unclear. We aimed to determine the structure of the mouse UHRF1 plant homeodomain (PHD) complexed with DPPA3 using nuclear magnetic resonance. Induced α-helices in DPPA3 upon binding of UHRF1 PHD contribute to stable complex formation with multifaceted interactions, unlike canonical ligand proteins of the PHD domain. Mutations in the binding interface and unfolding of the DPPA3 helical structure inhibited binding to UHRF1 and its chromatin localization. Our results provide structural insights into the mechanism and specificity underlying the inhibition of UHRF1 by DPPA3.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Dedos de Zinco PHD , Camundongos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Cromatina , Metilação de DNA , Proteínas Cromossômicas não Histona/metabolismo
7.
Molecules ; 28(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175065

RESUMO

Thiol catalysts are essential in native chemical ligation (NCL) to increase the reaction efficiency. In this paper, we report the use of thiocholine in chemical protein synthesis, including NCL-based peptide ligation and metal-free desulfurization. Evaluation of thiocholine peptide thioester in terms of NCL and hydrolysis kinetics revealed its practical utility, which was comparable to that of other alkyl thioesters. Importantly, thiocholine showed better reactivity as a thiol additive in desulfurization, which is often used in chemical protein synthesis to convert Cys residues to more abundant Ala residues. Finally, we achieved chemical synthesis of two differently methylated histone H3 proteins via one-pot NCL and desulfurization with thiocholine.


Assuntos
Peptídeos , Tiocolina , Peptídeos/química , Compostos de Sulfidrila/química , Histonas , Ligadura
8.
Nucleic Acids Res ; 48(20): 11510-11520, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33125082

RESUMO

Linker histones (H1s) are key structural components of the chromatin of higher eukaryotes. However, the mechanisms by which the intrinsically disordered linker histone carboxy-terminal domain (H1 CTD) influences chromatin structure and gene regulation remain unclear. We previously demonstrated that the CTD of H1.0 undergoes a significant condensation (reduction of end-to-end distance) upon binding to nucleosomes, consistent with a transition to an ordered structure or ensemble of structures. Here, we show that deletion of the H3 N-terminal tail or the installation of acetylation mimics or bona fide acetylation within H3 N-terminal tail alters the condensation of the nucleosome-bound H1 CTD. Additionally, we present evidence that the H3 N-tail influences H1 CTD condensation through direct protein-protein interaction, rather than alterations in linker DNA trajectory. These results support an emerging hypothesis wherein the H1 CTD serves as a nexus for signaling in the nucleosome.


Assuntos
Histonas/química , Proteínas Intrinsicamente Desordenadas/química , Acetilação , DNA/química , Glutamina/química , Histonas/genética , Histonas/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Lisina/metabolismo , Modelos Moleculares , Nucleossomos/metabolismo , Domínios Proteicos , Deleção de Sequência
9.
Angew Chem Int Ed Engl ; 61(39): e202206240, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881031

RESUMO

Strategies for one-pot peptide ligation enable chemists to access synthetic proteins at a high yield in a short time. Herein, we report a novel one-pot multi-segments ligation strategy using N-terminal thiazolidine (Thz) peptide and a newly designed formaldehyde scavenger. Among the designed 2-aminobenzamide-based aldehyde scavengers, 2-amino-5-methoxy-N',N'-dimethylbenzohydrazide (AMDBH) can remarkably convert Thz into unprotected cysteine at pH 4.0. Furthermore, AMDBH degrades Thz at a considerably low rate at pH 7.5, and thioester degradation caused by this scavenger is negligible. As a result, we have developed an efficient one-pot peptide ligation strategy by simply repetitively changing the pH with AMDBH. Finally, we synthesize mono-ubiquitinated histone H2A.Z (209 amino acids) via AMDBH-mediated one-pot four-segment peptide ligation in good yield.


Assuntos
Cisteína , Histonas , Aldeídos , Aminoácidos , Cisteína/química , Formaldeído , Peptídeos/química , Tiazolidinas/química
10.
Org Biomol Chem ; 19(29): 6478-6486, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241617

RESUMO

While 5-hydroxymethylcytidine in RNA (hm5C) is associated with cellular development and differentiation, its distribution and biological function remain largely unexplored because suitable detection methods are lacking. Here, we report a base-resolution sequencing method for hm5C in RNA by applying peroxotungstate-mediated chemical conversion of hm5C to trihydroxylated thymine (thT). Reverse transcription by SuperScript III terminated at the thT site, probably because of its unnatural nucleobase structure producing truncated cDNA. Consequently, base-resolution analysis of the hm5C sites in RNA was achieved with both Sanger sequencing and Illumina sequencing analysis by comparing sequencing data before and after peroxotungstate treatment.


Assuntos
Citidina/análogos & derivados
11.
Org Biomol Chem ; 18(40): 8084-8088, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33001106

RESUMO

We report an effective fluorescence in situ hybridization strategy, named l-DNA tagged FISH (LT-FISH), for highly sensitive RNA detection in fixed cultured cells. LT-FISH includes two-step hybridization processes with a l-d chimera oligonucleotide probe and a fluorescence-labeled PCR product tethering a l-DNA tag. The degree of fluorescence enhancement, depending on the length of PCR products, was up to 14-fold when the 606 bp product was used. Endogenous mRNA and miRNA in cancer cells were visualized by utilizing this l-DNA-mediated signal amplification technique.


Assuntos
Hibridização in Situ Fluorescente
12.
Biomacromolecules ; 20(3): 1246-1253, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30677290

RESUMO

Peptide ligation is an indispensable step in the chemical synthesis of target peptides and proteins that are difficult to synthesize at once by a solid-phase synthesis. The ligation reaction is generally conducted with two peptide fragments at a high aqueous concentration to increase the reaction rate; however, this often causes unpredictable aggregation and precipitation of starting or resulting peptides due to their hydrophobicities. Here, we have developed a novel peptide ligation strategy harnessing the two intrinsic characteristics of oligodeoxynucleotides (ODNs), i.e., their hydrophilicity and hybridization ability, which allowed increases in the water solubility of peptides and the reaction kinetics due to the proximity effect, respectively. Peptide-ODN conjugates that can be cleaved to regenerate native peptide sequences were synthesized using novel lysine derivatives containing conjugation handles and photolabile linkers, via solid-phase peptide synthesis and subsequent conjugation to 15-mer ODNs. Two complementary conjugates were applied to carbodiimide-mediated peptide ligation on a DNA scaffold, and the subsequent DNA removal was conducted by photoirradiation in a traceless fashion. This DNA scaffold-assisted ligation resulted in a significant acceleration of the reaction kinetics and enabled ligation of a hydrophobic peptide at a micromolar concentration. On the basis of this chemistry, a simultaneous ligation of three different peptide fragments on two different DNA scaffolds has been conducted for the first time.


Assuntos
DNA/química , Fragmentos de Peptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Oligodesoxirribonucleotídeos/química , Técnicas de Síntese em Fase Sólida
13.
Chem Rec ; 18(12): 1727-1744, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30070422

RESUMO

In the regulation processes of gene expression, genomic DNA and nuclear proteins, including histone proteins, cooperate with each other, leading to the distinctive functions of eukaryotic cells such as pluripotency and differentiation. Chemical modification of histone proteins and DNA has been revealed as one of the major driving forces in the complicated epigenetic regulation system. However, understanding of the precise molecular mechanisms is still limited. To address this issue, researchers have proposed both biological and chemical strategies for the preparation and detection of modified proteins and nucleic acids. In this review, we focus on chemical methods around the field of epigenetics. Chemical protein synthesis has enabled the preparation of site-specifically modified histones and their successful application to various in vitro assays, which have emphasized the significance of posttranslational modifications of interest. We also review the modification-specific chemical reactions against synthetic and genomic DNA, which enabled discrimination of several modified bases at single-base resolution.


Assuntos
DNA/metabolismo , Epigenômica , Histonas/metabolismo , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , DNA/química , Metilação de DNA , Histonas/química , Humanos , Processamento de Proteína Pós-Traducional , Técnicas de Síntese em Fase Sólida
14.
Angew Chem Int Ed Engl ; 57(50): 16533-16537, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30346110

RESUMO

One-pot multiple peptide ligation is a key technology to improve the efficiency of chemical protein synthesis. One-pot repetitive peptide ligation requires a cycle of three steps: peptide ligation, removal of a protecting group, and inactivation of the deprotection reagent. However, previous strategies are not sufficient because of harsh deprotection conditions, slow deprotection rates, and difficulty in quenching the deprotection reagent. To address these issues, we developed a rapid, efficient deprotection and subsequent quenching strategy using an allyloxycarbonyl group to protect the N-terminal cysteine residue. 4-Mercaptophenylacetic acid (MPAA), a thiol additive for native chemical ligation, functioned not only as a scavenger for π-allyl palladium complexes, but also as a quencher of palladium(0) complexes. By utilizing the multifunctionality of MPAA, we carried out a one-pot five-segment ligation to afford histone H2AX (142 amino acids), which was isolated in 59 % yield.


Assuntos
Cisteína/química , Histonas/síntese química , Peptídeos/síntese química , Fenilacetatos/química , Técnicas de Química Sintética , Cisteína/síntese química , Histonas/química , Humanos , Modelos Moleculares , Paládio/química , Peptídeos/química
15.
Biochemistry ; 56(36): 4767-4772, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28813589

RESUMO

Histone H2A and H2B form a H2A-H2B heterodimer, which is a fundamental unit of nucleosome assembly and disassembly. Several posttranslational modifications change the interface between the H2A-H2B dimer and the H3-H4 tetramer and regulate nucleosome stability. However, posttranslational modifications associated with the interface between H2A and H2B have not been discussed. In this paper, it is shown that Tyr57 phosphorylation in H2A strongly influences H2A-H2B dimerization. Tyr57-phosphorylated H2A was chemically synthesized and utilized to reconstitute the H2A-H2B dimer and nucleosome as well as canonical H2A. Thermal shift assays showed that phosphorylation destabilized the dimer and facilitated dissociation of H2A and H2B from the nucleosome structure. The proximity between H2A Tyr57 and the H2B αC helix is assumed to lead the destabilization. The DNA accessibility of the nucleosome was estimated by using micrococcal nuclease. The phosphorylated nucleosome did not change DNA accessibility compared to that of the canonical nucleosome. It is demonstrated that phosphorylation at Tyr57 changes the H2A-H2B dimer interaction but does not interfere with histone-DNA interactions. This work on the destabilization of the H2A-H2B dimer by Tyr57 phosphorylation is a promising step in elucidating control mechanisms of dynamic behavior of H2A and H2B through posttranslational modifications.


Assuntos
Histonas/química , DNA/química , Dimerização , Modelos Moleculares , Fosforilação , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica
16.
J Am Chem Soc ; 138(43): 14178-14181, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27766835

RESUMO

5-Hydroxymethylcytosine (hmC) is an essential intermediate in the active DNA demethylation pathway. Here we report a new base-resolution method for measuring hmC by combining peroxotungstate-mediated oxidation and sequencing analysis. We reveal that an oxidized product of hmC, trihydroxylated thymine (thT), tolerated the incorporation of dATP as a substrate in the process of DNA polymerase elongation. By comparing the results of Sanger sequencing before and after the oxidation, we observed that hmC sites on single-stranded DNAs could be discriminated from unmethylated cytosines. We found that a thermal cycle condition during peroxotungstate treatment enhanced the oxidation reaction of hmC in double-stranded DNA. Furthermore, Illumina sequencing analysis of hmC-containing synthetic genome fragments enabled us to identify simultaneously the positions of hmC in base resolution. This bisulfite-free simple hmC detection technique could facilitate the acquisition of epigenomic information.


Assuntos
5-Metilcitosina/análogos & derivados , Compostos de Tungstênio/química , 5-Metilcitosina/química , Pareamento de Bases , Sequência de Bases , DNA/química , DNA/genética , Radioisótopos de Selênio , Sulfitos/química
17.
Nat Chem Biol ; 10(7): 555-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24907900

RESUMO

The Watson-Crick base pairs between the 3'-terminal end of tRNAs and ribosomal RNA in the peptidyl transferase center are universally conserved. Here, we report that the introduction of compensatory mutations to Escherichia coli RNAs in this site leads to an orthogonal system independent of the wild-type counterpart, as demonstrated via the production of two peptide sequences from a single mRNA. This work thus identifies a new way to reprogram the genetic code.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Peptidil Transferases/genética , Biossíntese de Proteínas , RNA Ribossômico 23S/genética , RNA de Transferência/genética , Pareamento de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Código Genético , Mutação , Peptidil Transferases/metabolismo , Engenharia de Proteínas , RNA Ribossômico 23S/metabolismo , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
18.
Bioconjug Chem ; 26(3): 412-7, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25710491

RESUMO

Live-cell RNA imaging at specific intracellular locations is technically limited because of the diffusive nature of small oligonucleotide probes. The bulky fluorescent light-up probes that possess streptavidin or gold nanoparticles at the end of oligonucleotides were designed and synthesized. The bulky probes allowed nucleus- and cytoplasm-selective monitoring of endogenous mRNAs through nuclear and cytoplasmic microinjection, respectively. Simultaneous use of bulky and unbulky probes conjugated with different fluorescent dyes enabled dual color imaging of mRNAs present in nucleus and cytoplasm. Furthermore, we observed that the fluorescence near the cell edge in a living HeLa cell traveled over time in coordination with the dynamic formation and deformation of the pseudopodial protrusions after lipofection of the bulky probes.


Assuntos
Núcleo Celular/química , Citoplasma/química , Corantes Fluorescentes/química , Poro Nuclear/química , Sondas de Oligonucleotídeos/química , RNA Mensageiro/análise , Núcleo Celular/fisiologia , Citoplasma/fisiologia , Corantes Fluorescentes/análise , Células HeLa , Humanos , Microscopia de Fluorescência/métodos , Poro Nuclear/fisiologia , Sondas de Oligonucleotídeos/análise , RNA Mensageiro/química
20.
Methods Enzymol ; 698: 169-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38886031

RESUMO

Peptide ligation chemistries have revolutionized the synthesis of proteins with site-specific modifications or proteomimetics through assembly of multiple peptide segments. In order to prepare polypeptide chains consisting of 100-150 amino acid residues or larger generally assembled from three or more peptide segments, iterative purification process that decreases the product yield is usually demanded. Accordingly, methodologies for one-pot peptide ligation that omit the purification steps of intermediate peptide segments have been vigorously developed so far to improve the efficiency of chemical protein synthesis. In this chapter, we first outline the concept and recent advances of one-pot peptide ligation strategies. Then, the practical guideline for the preparation of peptide segments for one-pot peptide ligation is described with an emphasis on diketopiperazine thioester synthesis. Finally, we disclose the explicit protocols for one-pot four segment ligation via repetitive deprotection of N-terminal thiazolidine by a 2-aminobenzamide type aldehyde scavenger.


Assuntos
Peptídeos , Tiazolidinas , Tiazolidinas/química , Peptídeos/química , Dicetopiperazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA