RESUMO
BACKGROUND: Truncating variants in titin (TTNtv) are the most prevalent genetic etiology of dilated cardiomyopathy (DCM). Although TTNtv has been associated with atrial fibrillation, it remains unknown whether and how left atrial (LA) function differs between patients with DCM with and without TTNtv. We aimed to determine and compare LA function in patients with DCM with and without TTNtv and to evaluate whether and how left ventricular (LV) function affects the LA using computational modeling. METHODS AND RESULTS: Patients with DCM from the Maastricht DCM registry that underwent genetic testing and cardiovascular magnetic resonance (CMR) were included in the current study. Subsequent computational modeling (CircAdapt model) was performed to identify potential LV and LA myocardial hemodynamic substrates. In total, 377 patients with DCM (nâ¯=â¯42 with TTNtv, nâ¯=â¯335 without a genetic variant) were included (median age 55 years, interquartile range [IQR] 46-62 years, 62% men). Patients with TTNtv had a larger LA volume and decreased LA strain compared with patients without a genetic variant (LA volume index 60 mLm-2 [IQR 49-83] vs 51 mLm-2 [IQR 42-64]; LA reservoir strain 24% [IQR 10-29] vs 28% [IQR 20-34]; LA booster strain 9% [IQR 4-14] vs 14% [IQR 10-17], respectively; all P < .01). Computational modeling suggests that while the observed LV dysfunction partially explains the observed LA dysfunction in the patients with TTNtv, both intrinsic LV and LA dysfunction are present in patients with and without a TTNtv. CONCLUSIONS: Patients with DCM with TTNtv have more severe LA dysfunction compared with patients without a genetic variant. Insights from computational modeling suggest that both intrinsic LV and LA dysfunction are present in patients with DCM with and without TTNtv.
Assuntos
Fibrilação Atrial , Cardiomiopatias , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibrilação Atrial/complicações , Função do Átrio Esquerdo , Cardiomiopatias/complicações , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/complicações , Conectina/genética , Átrios do Coração , Insuficiência Cardíaca/complicaçõesRESUMO
BACKGROUND: Acute myocarditis is an inflammatory condition that may herald the onset of dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (ACM). We investigated the frequency and clinical consequences of DCM and ACM genetic variants in a population-based cohort of patients with acute myocarditis. METHODS: This was a population-based cohort of 336 consecutive patients with acute myocarditis enrolled in London and Maastricht. All participants underwent targeted DNA sequencing for well-characterized cardiomyopathy-associated genes with comparison to healthy controls (n=1053) sequenced on the same platform. Case ascertainment in England was assessed against national hospital admission data. The primary outcome was all-cause mortality. RESULTS: Variants that would be considered pathogenic if found in a patient with DCM or ACM were identified in 8% of myocarditis cases compared with <1% of healthy controls (P=0.0097). In the London cohort (n=230; median age, 33 years; 84% men), patients were representative of national myocarditis admissions (median age, 32 years; 71% men; 66% case ascertainment), and there was enrichment of rare truncating variants (tv) in ACM-associated genes (3.1% of cases versus 0.4% of controls; odds ratio, 8.2; P=0.001). This was driven predominantly by DSP-tv in patients with normal LV ejection fraction and ventricular arrhythmia. In Maastricht (n=106; median age, 54 years; 61% men), there was enrichment of rare truncating variants in DCM-associated genes, particularly TTN-tv, found in 7% (all with left ventricular ejection fraction <50%) compared with 1% in controls (odds ratio, 3.6; P=0.0116). Across both cohorts over a median of 5.0 years (interquartile range, 3.9-7.8 years), all-cause mortality was 5.4%. Two-thirds of deaths were cardiovascular, attributable to worsening heart failure (92%) or sudden cardiac death (8%). The 5-year mortality risk was 3.3% in genotype-negative patients versus 11.1% for genotype-positive patients (Padjusted=0.08). CONCLUSIONS: We identified DCM- or ACM-associated genetic variants in 8% of patients with acute myocarditis. This was dominated by the identification of DSP-tv in those with normal left ventricular ejection fraction and TTN-tv in those with reduced left ventricular ejection fraction. Despite differences between cohorts, these variants have clinical implications for treatment, risk stratification, and family screening. Genetic counseling and testing should be considered in patients with acute myocarditis to help reassure the majority while improving the management of those with an underlying genetic variant.
Assuntos
Cardiomiopatia Dilatada , Miocardite , Adulto , Cardiomiopatia Dilatada/genética , Feminino , Coração , Humanos , Masculino , Pessoa de Meia-Idade , Miocardite/diagnóstico , Miocardite/genética , Volume Sistólico , Função Ventricular EsquerdaRESUMO
BACKGROUND: Adipose tissue influences the expression and degradation of circulating biomarkers. We aimed to identify the biomarker profile and biological meaning of biomarkers associated with obesity to assess the effect of spironolactone on the circulating biomarkers and to explore whether obesity might modify the effect of spironolactone. METHODS AND RESULTS: Protein biomarkers (nâ¯=â¯276) from the Olink Proseek-Multiplex cardiovascular and inflammation panels were measured in plasma collected at baseline, 1 month and 9 months from the HOMAGE randomized controlled trial participants. Of the 510 participants, 299 had obesity defined as an increased waist circumference (≥102 cm in men and ≥88 cm in women). Biomarkers at baseline reflected adipogenesis, increased vascularization, decreased fibrinolysis, and glucose intolerance in patients with obesity at baseline. Treatment with spironolactone had only minor effects on this proteomic profile. Obesity modified the effect of spironolactone on systolic blood pressure (Pinteractionâ¯=â¯0.001), showing a stronger decrease of blood pressure in obese patients (-14.8 mm Hg 95% confidence interval -18.45 to -11.12) compared with nonobese patients (-3.6 mm Hg 95% confidence interval -7.82 to 0.66). CONCLUSIONS: Among patients at risk for heart failure, those with obesity have a characteristic proteomic profile reflecting adipogenesis and glucose intolerance. Spironolactone had only minor effects on this obesity-related proteomic profile, but obesity significantly modified the effect of spironolactone on systolic blood pressure.
Assuntos
Intolerância à Glucose , Insuficiência Cardíaca , Biomarcadores , Feminino , Humanos , Masculino , Antagonistas de Receptores de Mineralocorticoides , Obesidade/complicações , Obesidade/tratamento farmacológico , Proteômica , Espironolactona/uso terapêutico , Resultado do TratamentoRESUMO
AIMS: The dilated cardiomyopathy (DCM) phenotype is the result of combined genetic and acquired triggers. Until now, clinical decision-making in DCM has mainly been based on ejection fraction (EF) and NYHA classification, not considering the DCM heterogenicity. The present study aimed to identify patient subgroups by phenotypic clustering integrating aetiologies, comorbidities, and cardiac function along cardiac transcript levels, to unveil pathophysiological differences between DCM subgroups. METHODS AND RESULTS: We included 795 consecutive DCM patients from the Maastricht Cardiomyopathy Registry who underwent in-depth phenotyping, comprising extensive clinical data on aetiology and comorbodities, imaging and endomyocardial biopsies. Four mutually exclusive and clinically distinct phenogroups (PG) were identified based upon unsupervised hierarchical clustering of principal components: [PG1] mild systolic dysfunction, [PG2] auto-immune, [PG3] genetic and arrhythmias, and [PG4] severe systolic dysfunction. RNA-sequencing of cardiac samples (n = 91) revealed a distinct underlying molecular profile per PG: pro-inflammatory (PG2, auto-immune), pro-fibrotic (PG3; arrhythmia), and metabolic (PG4, low EF) gene expression. Furthermore, event-free survival differed among the four phenogroups, also when corrected for well-known clinical predictors. Decision tree modelling identified four clinical parameters (auto-immune disease, EF, atrial fibrillation, and kidney function) by which every DCM patient from two independent DCM cohorts could be placed in one of the four phenogroups with corresponding outcome (n = 789; Spain, n = 352 and Italy, n = 437), showing a feasible applicability of the phenogrouping. CONCLUSION: The present study identified four different DCM phenogroups associated with significant differences in clinical presentation, underlying molecular profiles and outcome, paving the way for a more personalized treatment approach.
Assuntos
Cardiomiopatia Dilatada , Cardiomiopatia Dilatada/genética , Análise por Conglomerados , Humanos , Itália , Fenótipo , EspanhaRESUMO
AIMS: To investigate the effects of spironolactone on fibrosis and cardiac function in people at increased risk of developing heart failure. METHODS AND RESULTS: Randomized, open-label, blinded-endpoint trial comparing spironolactone (50 mg/day) or control for up to 9 months in people with, or at high risk of, coronary disease and raised plasma B-type natriuretic peptides. The primary endpoint was the interaction between baseline serum galectin-3 and changes in serum procollagen type-III N-terminal pro-peptide (PIIINP) in participants assigned to spironolactone or control. Procollagen type-I C-terminal pro-peptide (PICP) and collagen type-1 C-terminal telopeptide (CITP), reflecting synthesis and degradation of type-I collagen, were also measured. In 527 participants (median age 73 years, 26% women), changes in PIIINP were similar for spironolactone and control [mean difference (mdiff): -0.15; 95% confidence interval (CI) -0.44 to 0.15 µg/L; P = 0.32] but those receiving spironolactone had greater reductions in PICP (mdiff: -8.1; 95% CI -11.9 to -4.3 µg/L; P < 0.0001) and PICP/CITP ratio (mdiff: -2.9; 95% CI -4.3 to -1.5; <0.0001). No interactions with serum galectin were observed. Systolic blood pressure (mdiff: -10; 95% CI -13 to -7 mmHg; P < 0.0001), left atrial volume (mdiff: -1; 95% CI -2 to 0 mL/m2; P = 0.010), and NT-proBNP (mdiff: -57; 95% CI -81 to -33 ng/L; P < 0.0001) were reduced in those assigned spironolactone. CONCLUSIONS: Galectin-3 did not identify greater reductions in serum concentrations of collagen biomarkers in response to spironolactone. However, spironolactone may influence type-I collagen metabolism. Whether spironolactone can delay or prevent progression to symptomatic heart failure should be investigated.
Assuntos
Insuficiência Cardíaca , Espironolactona , Idoso , Envelhecimento , Biomarcadores , Feminino , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Masculino , Fragmentos de Peptídeos , Pró-Colágeno , Espironolactona/uso terapêuticoRESUMO
BACKGROUND: Metabolomic profiling may have diagnostic and prognostic value in heart failure. This study investigated whether targeted blood and urine metabolomics reflects disease severity in patients with nonischemic dilated cardiomyopathy (DCM) and compared its incremental value on top of N-terminal prohormone of brain natriuretic peptide (NT-proBNP). METHODS AND RESULTS: A total of 149 metabolites were measured in plasma and urine samples of 273 patients with DCM and with varying stages of disease (patients with DCM and normal left ventricular reverse remodeling, nâ¯=â¯70; asymptomatic DCM, nâ¯=â¯72; and symptomatic DCM, nâ¯=â¯131). Acylcarnitines, sialic acid and glutamic acid are the most distinctive metabolites associated with disease severity, as repeatedly revealed by unibiomarker linear regression, sparse partial least squares discriminant analysis, random forest, and conditional random forest analyses. However, the absolute difference in the metabolic profile among groups was marginal. A decision-tree model based on the top metabolites did not surpass NT-proBNP in classifying stages. However, a combination of NT-proBNP and the top metabolites improved the decision tree to distinguish patients with DCM and left ventricular reverse remodeling from symptomatic DCM (area under the curve 0.813 ± 0.138 vs 0.739 ± 0.114; Pâ¯=â¯0.02). CONCLUSION: Functional cardiac recovery is reflected in metabolomics. These alterations reveal potential alternative treatment targets in advanced symptomatic DCM. The metabolic profile can complement NT-proBNP in determining disease severity in nonischemic DCM.
Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Cardiomiopatia Dilatada/diagnóstico , Humanos , Metabolômica , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Índice de Gravidade de Doença , Remodelação VentricularRESUMO
BACKGROUND: Haloperidol at high dosage is associated with QTc prolongation and polymorphic ventricular arrhythmia but the effects of low-dose haloperidol remain unknown. OBJECTIVE: To evaluate the effects of low-dose haloperidol on QTc-duration in frail hospitalized elderly patients with delirium. METHODS: A prospective observational study including hospitalized patients aged ≥70 years with Groningen Frailty Index-score > 3. We included 150 patients who received haloperidol and 150 age- and frailty-matched control patients. Serial ECG recordings were performed at hospital admission and during hospitalization. QT-interval was corrected according to Framingham (QTc). Patients were grouped according to baseline QTc in normal (nQTc), borderline (bQTc) or abnormal (aQTc). Primary outcome was change in QTc-duration between first and second ECG. Potentially dangerous QTc was defined as QTc >500 ms or an increase of >50 ms. RESULTS: Patients in the haloperidol group (48% male, mean age 85y, nQT n = 98, bQT n = 31, aQT n = 20) received an average dose of 1.5 mg haloperidol per 24 hours. QTc decreased in patients with borderline (mean - 15 ± 29 ms, P < 0.05) or abnormal (-19 ± 27 ms, P < 0.05) QTc at baseline, no patients developed dangerous QTc-duration. In the control group (41% male, mean age 84y, nQT n = 99 bQT n = 29, aQT n = 22) QTc decreased to a similar extent (bQT -7 ± 16 ms, aQTc -23 ± 20 ms). CONCLUSION: A trend to QTc shortening was seen, especially in patients with borderline or abnormal QTc at baseline, regardless of haloperidol use. These findings suggest that ECG monitoring of frail elderly patients who receive low-dose haloperidol, may not be necessary.
Assuntos
Antipsicóticos , Síndrome do QT Longo , Idoso , Idoso de 80 Anos ou mais , Antipsicóticos/efeitos adversos , Eletrocardiografia , Feminino , Idoso Fragilizado , Haloperidol/efeitos adversos , Humanos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/diagnóstico , Masculino , Estudos ProspectivosRESUMO
Aims: Truncating titin variants (TTNtv) are the most prevalent genetic cause of dilated cardiomyopathy (DCM). We aim to study clinical parameters and long-term outcomes related to the TTNtv genotype and determine the related molecular changes at tissue level in TTNtv DCM patients. Methods and results: A total of 303 consecutive and extensively phenotyped DCM patients (including cardiac imaging, Holter monitoring, and endomyocardial biopsy) underwent DNA sequencing of 47 cardiomyopathy-associated genes including TTN, yielding 38 TTNtv positive (13%) patients. At long-term follow-up (median of 45 months, up to 12 years), TTNtv DCM patients had increased ventricular arrhythmias compared to other DCM, but a similar survival. Arrhythmias are especially prominent in TTNtv patients with an additional environmental trigger (i.e. virus infection, cardiac inflammation, systemic disease, toxic exposure). Importantly, cardiac mass is reduced in TTNtv patients, despite similar cardiac function and dimensions at cardiac magnetic resonance. These enhanced life-threatening arrhythmias and decreased cardiac mass in TTNtv DCM patients go along with significant cardiac energetic and matrix alterations. All components of the mitochondrial electron transport chain are significantly upregulated in TTNtv hearts at RNA-sequencing. Also, interstitial fibrosis was augmented in TTNtv patients at histological and transcript level. Conclusion: Truncating titin variants lead to pronounced cardiac alterations in mitochondrial function, with increased interstitial fibrosis and reduced hypertrophy. Those structural and metabolic alterations in TTNtv hearts go along with increased ventricular arrhythmias at long-term follow-up, with a similar survival and overall cardiac function.
Assuntos
Cardiomiopatias , Conectina , Arritmias Cardíacas/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Conectina/genética , Conectina/metabolismo , Conectina/fisiologia , Fibrose/metabolismo , Humanos , Mitocôndrias/metabolismoRESUMO
AIMS: Viral myocarditis (VM) is an important cause of heart failure and sudden cardiac death in young healthy adults; it is also an aetiological precursor of dilated cardiomyopathy. We explored the role of the miR-221/-222 family that is up-regulated in VM. METHODS AND RESULTS: Here, we show that microRNA-221 (miR-221) and miR-222 levels are significantly elevated during acute VM caused by Coxsackievirus B3 (CVB3). Both miRs are expressed by different cardiac cells and by infiltrating inflammatory cells, but their up-regulation upon myocarditis is mostly exclusive for the cardiomyocyte. Systemic inhibition of miR-221/-222 in mice increased cardiac viral load, prolonged the viraemic state, and strongly aggravated cardiac injury and inflammation. Similarly, in vitro, overexpression of miR-221 and miR-222 inhibited enteroviral replication, whereas knockdown of this miR-cluster augmented viral replication. We identified and confirmed a number of miR-221/-222 targets that co-orchestrate the increased viral replication and inflammation, including ETS1/2, IRF2, BCL2L11, TOX, BMF, and CXCL12. In vitro inhibition of IRF2, TOX, or CXCL12 in cardiomyocytes significantly dampened their inflammatory response to CVB3 infection, confirming the functionality of these targets in VM and highlighting the importance of miR-221/-222 as regulators of the cardiac response to VM. CONCLUSIONS: The miR-221/-222 cluster orchestrates the antiviral and inflammatory immune response to viral infection of the heart. Its inhibition increases viral load, inflammation, and overall cardiac injury upon VM.
Assuntos
Infecções por Coxsackievirus/virologia , MicroRNAs/fisiologia , Miocardite/virologia , Animais , Infecções por Coxsackievirus/imunologia , Humanos , Imunidade Celular/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Miocardite/imunologia , Miócitos Cardíacos/imunologia , Linfócitos T/imunologia , Regulação para Cima , Carga Viral/imunologia , Replicação Viral/imunologiaRESUMO
BACKGROUND: Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this process. We recently reported that microRNA-155 is a key mediator of cardiac inflammation and injury in infectious myocarditis. Here, we investigated the impact of microRNA-155 manipulation in hypertensive heart disease. METHODS AND RESULTS: Genetic loss or pharmacological inhibition of the leukocyte-expressed microRNA-155 in mice markedly reduced cardiac inflammation, hypertrophy, and dysfunction on pressure overload. These alterations were macrophage dependent because in vivo cardiomyocyte-specific microRNA-155 manipulation did not affect cardiac hypertrophy or dysfunction, whereas bone marrow transplantation from wild-type mice into microRNA-155 knockout animals rescued the hypertrophic response of the cardiomyocytes and vice versa. In vitro, media from microRNA-155 knockout macrophages blocked the hypertrophic growth of stimulated cardiomyocytes, confirming that macrophages influence myocyte growth in a microRNA-155-dependent paracrine manner. These effects were at least partly mediated by the direct microRNA-155 target suppressor of cytokine signaling 1 (Socs1) because Socs1 knockdown in microRNA-155 knockout macrophages largely restored their hypertrophy-stimulating potency. CONCLUSIONS: Our findings reveal that microRNA-155 expression in macrophages promotes cardiac inflammation, hypertrophy, and failure in response to pressure overload. These data support the causative significance of inflammatory signaling in hypertrophic heart disease and demonstrate the feasibility of therapeutic microRNA targeting of inflammation in heart failure.
Assuntos
Cardiomegalia/patologia , Insuficiência Cardíaca/patologia , Macrófagos/patologia , MicroRNAs/genética , Miócitos Cardíacos/patologia , Animais , Cardiomegalia/genética , Células Cultivadas , Insuficiência Cardíaca/genética , Humanos , Inflamação/genética , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , RatosRESUMO
RATIONALE: Viral myocarditis results from an adverse immune response to cardiotropic viruses, which causes irreversible myocyte destruction and heart failure in previously healthy people. The involvement of microRNAs and their usefulness as therapeutic targets in this process are unknown. OBJECTIVE: To identify microRNAs involved in viral myocarditis pathogenesis and susceptibility. METHODS AND RESULTS: Cardiac microRNAs were profiled in both human myocarditis and in Coxsackievirus B3-injected mice, comparing myocarditis-susceptible with nonsusceptible mouse strains longitudinally. MicroRNA responses diverged depending on the susceptibility to myocarditis after viral infection in mice. MicroRNA-155, -146b, and -21 were consistently and strongly upregulated during acute myocarditis in both humans and susceptible mice. We found that microRNA-155 expression during myocarditis was localized primarily in infiltrating macrophages and T lymphocytes. Inhibition of microRNA-155 by a systemically delivered LNA-anti-miR attenuated cardiac infiltration by monocyte-macrophages, decreased T lymphocyte activation, and reduced myocardial damage during acute myocarditis in mice. These changes were accompanied by the derepression of the direct microRNA-155 target PU.1 in cardiac inflammatory cells. Beyond the acute phase, microRNA-155 inhibition reduced mortality and improved cardiac function during 7 weeks of follow-up. CONCLUSIONS: Our data show that cardiac microRNA dysregulation is a characteristic of both human and mouse viral myocarditis. The inflammatory microRNA-155 is upregulated during acute myocarditis, contributes to the adverse inflammatory response to viral infection of the heart, and is a potential therapeutic target for viral myocarditis.
Assuntos
Infecções por Coxsackievirus/genética , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Miocardite/genética , Miocárdio/metabolismo , Animais , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/fisiopatologia , Infecções por Coxsackievirus/terapia , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Ativação Linfocitária , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Miocardite/imunologia , Miocardite/patologia , Miocardite/fisiopatologia , Miocardite/terapia , Miocardite/virologia , Miocárdio/imunologia , Miocárdio/patologia , Oligonucleotídeos/administração & dosagem , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Fatores de TempoRESUMO
AIMS: We aim to characterize the clinical and proteomic profiles of patients at risk of developing heart failure (HF), with and without coronary artery disease (CAD) or prior myocardial infarction (MI). METHODS AND RESULTS: HOMAGE evaluated the effect of spironolactone on plasma and serum markers of fibrosis over 9 months of follow-up in participants with (or at risk of having) CAD, and raised natriuretic peptides. In this post hoc analysis, patients were classified as (i) neither CAD nor MI; (ii) CAD; or (iii) MI. Proteomic between-group differences were evaluated through logistic regression and narrowed using backward stepwise selection and bootstrapping. Among the 527 participants, 28% had neither CAD or MI, 31% had CAD, and 41% had prior MI. Compared with people with neither CAD nor MI, those with CAD had higher baseline plasma concentrations of matrix metalloproteinase-7 (MMP-7), galectin-4 (GAL4), plasminogen activator inhibitor 1 (PAI-1), and lower plasma peptidoglycan recognition protein 1 (PGLYRP1), whilst those with a history of MI had higher plasma MMP-7, neurotrophin-3 (NT3), pulmonary surfactant-associated protein D (PSPD), and lower plasma tumour necrosis factor-related activation-induced cytokine (TRANCE). Proteomic signatures were similar for patients with CAD or prior MI. Treatment with spironolactone was associated with an increase of MMP7, NT3, and PGLYRP1 at 9 months. CONCLUSIONS: In patients at risk of developing HF, those with CAD or MI had a different proteomic profile regarding inflammatory, immunological, and collagen catabolic processes.
Assuntos
Doença da Artéria Coronariana , Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/complicações , Metaloproteinase 7 da Matriz/uso terapêutico , Espironolactona/uso terapêutico , Proteômica , Infarto do Miocárdio/complicações , Insuficiência Cardíaca/complicaçõesRESUMO
INTRODUCTION AND OBJECTIVES: Limited information is available on the safety of pregnancy in patients with genetic dilated cardiomyopathy (DCM) and in carriers of DCM-causing genetic variants without the DCM phenotype. We assessed cardiac, obstetric, and fetal or neonatal outcomes in this group of patients. METHODS: We studied 48 women carrying pathogenic or likely pathogenic DCM-associated variants (30 with DCM and 18 without DCM) who had 83 pregnancies. Adverse cardiac events were defined as heart failure (HF), sustained ventricular tachycardia, ventricular assist device implantation, heart transplant, and/or maternal cardiac death during pregnancy, or labor and delivery, and up to the sixth postpartum month. RESULTS: A total of 15 patients, all with DCM (31% of the total cohort and 50% of women with DCM) experienced adverse cardiac events. Obstetric and fetal or neonatal complications were observed in 14% of pregnancies (10 in DCM patients and 2 in genetic carriers). We analyzed the 30 women who had been evaluated before their first pregnancy (12 with overt DCM and 18 without the phenotype). Five of the 12 (42%) women with DCM had adverse cardiac events despite showing NYHA class I or II before pregnancy. Most of these women had a history of cardiac events before pregnancy (80%). Among the 18 women without phenotype, 3 (17%) developed DCM toward the end of pregnancy. CONCLUSIONS: Cardiac complications during pregnancy and postpartum were common in patients with genetic DCM and were primarily related to HF. Despite apparently good tolerance of pregnancy in unaffected genetic carriers, pregnancy may act as a trigger for DCM onset in a subset of these women.
RESUMO
The QRS duration can be easily obtained from a 12-lead electrocardiogram. Increased QRS duration reflects greater ventricular activation times and often ventricular dyssynchrony. Dyssynchrony causes an impairment of the global cardiac function and adversely affects the prognosis of patients with heart failure (HF). Little is known about the impact of pharmacologic therapies on the QRS duration, particularly for patients with presymptomatic HF with a preserved left ventricular (LV) ejection fraction (i.e., stage B HF with preserved ejection fraction [HFpEF]). The HOMAGE (Heart OMics in AGEing) trial enrolled patients at risk factors for developing HF and assigned them to receive either spironolactone or the usual care for approximately 9 months in a randomized manner. This analysis reports the effect of spironolactone on the QRS duration. A total of 525 patients was included in the analysis. The median (percentile25-75) QRS duration at baseline was 92 (84 to 106) ms. Spironolactone reduced the QRS duration at month 9 by -2.8, 95% confidence interval -4.6 to -1.0 ms, p = 0.003. No significant associations were found between month 9 changes in the QRS duration and corresponding changes in the LV ejection fraction, LV mass, LV end-diastolic volume, blood pressure, N-terminal pro-brain natriuretic peptide, and procollagen type I carboxy-terminal propeptide (all p >0.05). This analysis shows that for patients with stage B HFpEF, therapy with spironolactone for 9 months shortened the QRS duration, an effect that was not associated with reductions in LV mass or volume, supporting the hypothesis that spironolactone has direct beneficial effects to improve myocardial electrical activation in patients with stage B HFpEF.
Assuntos
Insuficiência Cardíaca , Humanos , Espironolactona/uso terapêutico , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologiaRESUMO
Dilated cardiomyopathy (DCM) has a genetic cause in up to 40% of cases, with differences in disease penetrance and clinical presentation, due to different exogeneous triggers and implicated genes. Cardiac inflammation can be the consequence of an exogeneous trigger, subsequently unveiling a phenotype. The study aimed to determine cardiac inflammation in a cohort of genetic DCM patients and investigate whether it associated with a younger disease onset. The study included 113 DCM patients with a genetic etiology, of which 17 had cardiac inflammation as diagnosed in an endomyocardial biopsy. They had a significant increased cardiac infiltration of white blood, cytotoxic T, and T-helper cells (p < 0.05). Disease expression was at a younger age in those patients with cardiac inflammation, compared to those without inflammation (p = 0.015; 50 years (interquartile range (IQR) 42-53) versus 53 years (IQR 46-61). However, cardiac inflammation was not associated with a higher incidence of all-cause mortality, heart failure hospitalization, or life-threatening arrhythmias (hazard ratio 0.85 [0.35-2.07], p = 0.74). Cardiac inflammation is associated with an earlier disease onset in patients with genetic DCM. This might indicate that myocarditis is an exogeneous trigger unveiling a phenotype at a younger age in patients with a genetic susceptibility, or that cardiac inflammation resembles a 'hot-phase' of early-onset disease.
RESUMO
BACKGROUND: Left atrial (LA) dilation is associated with a worse prognosis in several cardiovascular settings, but therapies can promote LA reverse remodeling. The aim of this study was to characterize and define the prognostic implications of LA volume index (LAVI) reduction in patients with dilated cardiomyopathy (DCM). METHODS: Consecutive patients with DCM from two tertiary care centers, with available echocardiograms at baseline and at 1-year follow-up, were retrospectively analyzed. LA dilation was defined as LAVI > 34 mL/m2, and change in LAVI (ΔLAVI) was defined as the 1-year relative LAVI reduction. The outcome was a composite of death, heart transplantation (HTx), or heart failure hospitalization (HFH). RESULTS: Five hundred sixty patients were included (mean age, 54 ± 13 years; mean left ventricular ejection fraction, 31 ± 10%; mean LAVI, 45 ± 18 mL/m2). Baseline LAVI had a non-linear association with the risk for death, HTx, or HFH, independent of age, left ventricular ejection fraction, mitral regurgitation, and medical therapy (P < .01). At 1-year follow-up, LAVI decreased in 374 patients (67%; median ΔLAVI, -24%; interquartile range, -37% to -11%). Factors independently associated with ΔLAVI were higher baseline LAVI and lower baseline left ventricular ejection fraction. After multivariable adjustment, ΔLAVI showed a linear association with the risk for death, HTx, or HFH (hazard ratio, 0.96 per 5% decrease; 95% CI, 0.93-0.99; P = .042). At 1-year follow-up, patients with reductions in LAVI of >10% and LAVI normalization (i.e., follow-up LAVI ≤ 34 mL/m2; 31% of the overall cohort) were at lower risk for death, HTx, or HFH (hazard ratio, 0.37; 95% CI, 0.35-0.97; P = .028). CONCLUSIONS: In a large cohort of patients with DCM, 1-year reduction in LAVI was observed in a number of patients. The association between reduction in LAVI and death, HTx, or HFH suggests that LA structural reverse remodeling might be considered an additional parameter useful in the individualized risk stratification of patients with DCM.
Assuntos
Fibrilação Atrial , Remodelamento Atrial , Cardiomiopatia Dilatada , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Volume Sistólico , Cardiomiopatia Dilatada/diagnóstico por imagem , Átrios do Coração/diagnóstico por imagem , Função Ventricular Esquerda , PrognósticoRESUMO
BACKGROUND: Collagen cross-linking is a fundamental process in dilated cardiomyopathy (DCM) and occurs when collagen deposition exceeds degradation, leading to impaired prognosis. This study investigated the associations of collagen-metabolism biomarkers with left ventricular function and prognosis in DCM. METHODS: DCM patients who underwent endomyocardial biopsy, blood sampling, and cardiac MRI were included. The primary endpoint included death, heart failure hospitalization, or life-threatening arrhythmias, with a follow-up of 6 years (5-8). RESULTS: In total, 209 DCM patients were included (aged 54 ± 13 years, 65% male). No associations were observed between collagen volume fraction, circulating carboxy-terminal propeptide of procollagen type-I (PICP), or collagen type I carboxy-terminal telopeptide [CITP] and matrix metalloproteinase [MMP]-1 ratio and cardiac function parameters. However, CITP:MMP-1 was significantly correlated with global longitudinal strain (GLS) in the total study sample (R = -0.40, p < 0.0001; lower CITP:MMP-1 ratio was associated with impaired GLS), with even stronger correlations in patients with LVEF > 40% (R = -0.70, p < 0.0001). Forty-seven (22%) patients reached the primary endpoint. Higher MMP-1 levels were associated with a worse outcome, even after adjustment for clinical and imaging predictors (1.026, 95% CI 1.002-1.051, p = 0.037), but CITP and CITP:MMP-1 were not. Combining MMP-1 and PICP improved the goodness-of-fit (LHR36.67, p = 0.004). CONCLUSION: The degree of myocardial cross-linking (CITP:MMP-1) is associated with myocardial longitudinal contraction, and MMP-1 is an independent predictor of outcome in DCM patients.
RESUMO
BACKGROUND: We sought to identify protein biomarkers of new-onset heart failure (HF) in 3 independent cohorts (HOMAGE cohort [Heart Omics and Ageing], ARIC study [Atherosclerosis Risk in Communities], and FHS [Framingham Heart Study]) and assess if and to what extent they improve HF risk prediction compared to clinical risk factors alone. METHODS: A nested case-control design was used with cases (incident HF) and controls (without HF) matched on age and sex within each cohort. Plasma concentrations of 276 proteins were measured at baseline in ARIC (250 cases/250 controls), FHS (191/191), and HOMAGE cohort (562/871). RESULTS: In single protein analysis, after adjusting for matching variables and clinical risk factors (and correcting for multiple testing), 62 proteins were associated with incident HF in ARIC, 16 in FHS, and 116 in HOMAGE cohort. Proteins associated with incident HF in all cohorts were BNP (brain natriuretic peptide), NT-proBNP (N-terminal pro-B-type natriuretic peptide), eukaryotic translation initiation factor 4E-BP1 (4E-binding protein 1), hepatocyte growth factor (HGF), Gal-9 (galectin-9), TGF-alpha (transforming growth factor alpha), THBS2 (thrombospondin-2), and U-PAR (urokinase plasminogen activator surface receptor). The increment in C-index for incident HF based on a multiprotein biomarker approach, in addition to clinical risk factors and NT-proBNP, was 11.1% (7.5%-14.7%) in ARIC, 5.9% (2.6%-9.2%) in FHS, and 7.5% (5.4%-9.5%) in HOMAGE cohort, all P<0.001), each of which was a larger increase than that for NT-proBNP on top of clinical risk factors. Complex network analysis revealed a number of overrepresented pathways related to inflammation (eg, tumor necrosis factor and interleukin) and remodeling (eg, extracellular matrix and apoptosis). CONCLUSIONS: A multiprotein biomarker approach improves prediction of incident HF when added to natriuretic peptides and clinical risk factors.
Assuntos
Aterosclerose , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Biomarcadores , Estudos Longitudinais , Fatores de Risco , Envelhecimento , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Peptídeo Natriurético Encefálico , Fragmentos de PeptídeosRESUMO
BACKGROUND: The left atrium is an early sensor of left ventricular (LV) dysfunction. Still, the prognostic value of left atrial (LA) function (strain) on cardiac magnetic resonance (CMR) in dilated cardiomyopathy (DCM) remains unknown. OBJECTIVES: The goal of this study was to evaluate the prognostic value of CMR-derived LA strain in DCM. METHODS: Patients with DCM from the Maastricht Cardiomyopathy Registry with available CMR imaging were included. The primary endpoint was the combination of sudden or cardiac death, heart failure (HF) hospitalization, or life-threatening arrhythmias. Given the nonlinearity of continuous variables, cubic spline analysis was performed to dichotomize. RESULTS: A total of 488 patients with DCM were included (median age: 54 [IQR: 46-62] years; 61% male). Seventy patients (14%) reached the primary endpoint (median follow-up: 6 [IQR: 4-9] years). Age, New York Heart Association (NYHA) functional class >II, presence of late gadolinium enhancement (LGE), LV ejection fraction (LVEF), LA volume index (LAVI), LV global longitudinal strain (GLS), and LA reservoir and conduit strain were univariably associated with the outcome (all P < 0.02). LA conduit strain was a stronger predictor of outcome compared with reservoir strain. LA conduit strain, NYHA functional class >II, and LGE remained associated in the multivariable model (LA conduit strain HR: 3.65 [95% CI: 2.01-6.64; P < 0.001]; NYHA functional class >II HR: 1.81 [95% CI: 1.05-3.12; P = 0.033]; and LGE HR: 2.33 [95% CI: 1.42-3.85; P < 0.001]), whereas age, N-terminal pro-B-type natriuretic peptide, LVEF, left atrial ejection fraction, LAVI, and LV GLS were not. Adding LA conduit strain to other independent predictors (NYHA functional class and LGE) significantly improved the calibration, accuracy, and reclassification of the prediction model (P < 0.05). CONCLUSIONS: LA conduit strain on CMR is a strong independent prognostic predictor in DCM, superior to LV GLS, LVEF, and LAVI and incremental to LGE. Including LA conduit strain in DCM patient management should be considered to improve risk stratification.