Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7997): 86-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297172

RESUMO

Electrolysis that reduces carbon dioxide (CO2) to useful chemicals can, in principle, contribute to a more sustainable and carbon-neutral future1-6. However, it remains challenging to develop this into a robust process because efficient conversion typically requires alkaline conditions in which CO2 precipitates as carbonate, and this limits carbon utilization and the stability of the system7-12. Strategies such as physical washing, pulsed operation and the use of dipolar membranes can partially alleviate these problems but do not fully resolve them11,13-15. CO2 electrolysis in acid electrolyte, where carbonate does not form, has therefore been explored as an ultimately more workable solution16-18. Herein we develop a proton-exchange membrane system that reduces CO2 to formic acid at a catalyst that is derived from waste lead-acid batteries and in which a lattice carbon activation mechanism contributes. When coupling CO2 reduction with hydrogen oxidation, formic acid is produced with over 93% Faradaic efficiency. The system is compatible with start-up/shut-down processes, achieves nearly 91% single-pass conversion efficiency for CO2 at a current density of 600 mA cm-2 and cell voltage of 2.2 V and is shown to operate continuously for more than 5,200 h. We expect that this exceptional performance, enabled by the use of a robust and efficient catalyst, stable three-phase interface and durable membrane, will help advance the development of carbon-neutral technologies.

3.
Proc Natl Acad Sci U S A ; 119(20): e2202812119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35533282

RESUMO

Developing facile approaches for preparing efficient electrocatalysts is of significance to promote sustainable energy technologies. Here, we report a facile iron-oxidizing bacteria corrosion approach to construct a composite electrocatalyst of nickel­iron oxyhydroxides combined with iron oxides. The obtained electrocatalyst shows improved electrocatalytic activity and stability for oxygen evolution, with an overpotential of ∼230 mV to afford the current density of 10 mA cm−2. The incorporation of iron oxides produced by iron-oxidizing bacteria corrosion optimizes the electronic structure of nickel­iron oxyhydroxide electrodes, which accounts for the decreased free energy of oxygenate generation and the improvement of OER activity. This work demonstrates a natural bacterial corrosion approach for the facile preparation of efficient electrodes for water oxidation, which may provide interesting insights in the multidisciplinary integration of innovative nanomaterials and emerging energy technologies.


Assuntos
Níquel , Oxigênio , Microbiologia da Água , Corrosão , Compostos Férricos , Ferro , Água
4.
J Am Chem Soc ; 146(22): 15356-15365, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38773696

RESUMO

Electrosynthesis has emerged as an enticing solution for hydrogen peroxide (H2O2) production. However, efficient H2O2 generation encounters challenges related to the robust gas-liquid-solid interface within electrochemical reactors. In this work, we introduce an effective hydrophobic coating modified by iron (Fe) sites to optimize the reaction microenvironment. This modification aims to mitigate radical corrosion through Fe(II)/Fe(III) redox chemistry, reinforcing the reaction microenvironment at the three-phase interface. Consequently, we achieved a remarkable yield of up to 336.1 mmol h-1 with sustained catalyst operation for an extensive duration of 230 h at 200 mA cm-2 without causing damage to the reaction interface. Additionally, the Faradaic efficiency of H2O2 exceeded 90% across a broad range of test current densities. This surface redox chemistry approach for manipulating the reaction microenvironment not only advances long-term H2O2 electrosynthesis but also holds promise for other gas-starvation electrochemical reactions.

5.
Angew Chem Int Ed Engl ; 63(16): e202319936, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372428

RESUMO

Revealing the dynamic reconstruction process and tailoring advanced copper (Cu) catalysts is of paramount significance for promoting the conversion of CO2 into ethylene (C2H4), paving the way for carbon neutralization and facilitating renewable energy storage. In this study, we initially employed density functional theory (DFT) and molecular dynamics (MD) simulations to elucidate the restructuring behavior of a catalyst under electrochemical conditions and delineated its restructuring patterns. Leveraging insights into this restructuring behavior, we devised an efficient, low-coordination copper-based catalyst. The resulting synthesized catalyst demonstrated an impressive Faradaic efficiency (FE) exceeding 70 % for ethylene generation at a current density of 800 mA cm-2. Furthermore, it showed robust stability, maintaining consistent performance for 230 hours at a cell voltage of 3.5 V in a full-cell system. Our research not only deepens the understanding of the active sites involved in designing efficient carbon dioxide reduction reaction (CO2RR) catalysts but also advances CO2 electrolysis technologies for industrial application.

6.
Small ; 19(15): e2207474, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36604992

RESUMO

Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky heterojunction composed of porous cobalt-nitrogen-carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott-Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.

7.
Angew Chem Int Ed Engl ; 62(12): e202218621, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36658098

RESUMO

Solid-state lithium batteries are promising and safe energy storage devices for mobile electronics and electric vehicles. In this work, we report a facile in situ polymerization of 1,3-dioxolane electrolytes to fabricate integrated solid-state lithium batteries. The in situ polymerization and formation of solid-state dioxolane electrolytes on interconnected carbon nanotubes (CNTs) and active materials is the key to realizing a high-performance battery with excellent interfacial contact among CNTs, active materials and electrolytes. Therefore, the electrodes could be tightly integrated into batteries through the CNTs and electrolyte. Electrons/ions enable full access to active materials in the whole electrode. Electrodes with a low resistance of 4.5â€…Ω â–¡-1 and high lithium-ion diffusion efficiency of 2.5×10-11  cm2 s-1 can significantly improve the electrochemical kinetics. Subsequently, the batteries demonstrated high energy density, amazing charge/discharge rate and long cycle life.

8.
Small ; 18(7): e2106606, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34874623

RESUMO

Designing cost-effective and high-efficiency bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) occurred at air electrodes is vitally significant yet challenging for Zn-air batteries (ZABs). In this work, a zinc substrate induced fabrication is reported of free-standing nanocarbon hybrid film which shows good bifunctional activity and can be directly used as the air electrode in the rechargeable ZABs. The designed nanocarbon film in Zn-air battery provides a satisfactory power density of 185 mW cm-2 and cycling stability for 1200 h under the current density of 10 mA cm-2 . This hybrid film also gives a solid-state ZAB excellent flexibility with a power density of 160 mW cm-2 . The free-standing hybrid with abundant cobalt-nitrogen-carbon species coupled with porous architecture would be the original factor for its satisfactory performance of rechargeable ZABs. This work would pave an ideal way to design integrated electrode with high electrocatalytic performance towards electrochemical energy technologies.

9.
Angew Chem Int Ed Engl ; 61(44): e202210567, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36093885

RESUMO

As a key component of batteries, the electrolyte determines the ion transport and interface chemistry of the cathode and anode. In this work, we develop a dual-network structured hydrogel electrolyte composed of polyacrylamide (PAM), sodium alginate (SA) and potassium iodide (KI) for solid-state zinc-air/iodide hybrid batteries. The assembled hybrid battery shows excellent renewability and a long cycling life of 110 h with a high energy efficiency of 80 %. The ion-crosslinked dual-network structure endows the material with improved mechanical strength and increased ionic conductivity. More importantly, the introduction of iodine species not only offers more favorable cathodic kinetics of iodide/iodate redox than oxygen electrocatalysis but also regulates the solvation structure of zinc ions to ensure better interface stability. This work provides significant concepts for developing novel solid-state electrolytes to realize high-performance energy devices and technologies.

10.
J Gastroenterol Hepatol ; 36(6): 1562-1570, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33074566

RESUMO

BACKGROUND AND AIM: Gastroesophageal varices (GEV) present in compensated advanced chronic liver disease (cACLD) and can develop into high-risk varices (HRV). The gold standard for diagnosing GEV is esophagogastroduodenoscopy (EGD). However, EGD is invasive and less tolerant. This study aimed to develop and validate radiomics signatures based on noncontrast-enhanced computed tomography (CT) images for non-invasive diagnosis of GEV and HRV in patients with cACLD. METHODS: The multicenter trial enrolled 161 patients with cACLD from six university hospitals in China between January 2015 and September 2019, who underwent both EGD and noncontrast-enhanced CT examination within 14 days prior to the endoscopy. Two radiomics signatures, termed rGEV and rHRV, respectively, were built based on CT images in a training cohort of 129 patients and validated in a prospective validation cohort of 32 patients (ClinicalTrials. gov identifier: NCT03749954). RESULTS: In the training cohort, both rGEV and rHRV exhibited high discriminative abilities on determining the existence of GEV and HRV with the area under receiver operating characteristic curve (AUC) of 0.941 (95% confidence interval [CI] 0.904-0.978) and 0.836 (95% CI 0.766-0.905), respectively. In validation cohort, rGEV and rHRV showed high discriminative abilities with AUCs of 0.871 (95% CI 0.739-1.000) and 0.831 (95% CI 0.685-0.978), respectively. CONCLUSIONS: This study demonstrated that rGEV and rHRV could serve as the satisfying auxiliary parameters for detection of GEV and HRV with good diagnostic performance.


Assuntos
Varizes Esofágicas e Gástricas/diagnóstico por imagem , Hepatopatias/complicações , Tomografia Computadorizada por Raios X/métodos , Adulto , Doença Crônica , Varizes Esofágicas e Gástricas/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Risco , Índice de Gravidade de Doença
11.
J Am Chem Soc ; 141(44): 17703-17712, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31603672

RESUMO

Physical adsorption of gas molecules in microporous materials is an exothermic process, with desorption entropy driving a decrease in uptake with temperature. Enhanced gas sorption with increasing temperature is rare in porous materials and is indicative of sorbate initiated structural change. Here, sorption of C2H6, C3H6, and C3H8 in a flexible microporous metal-organic framework (MOF) {Cu(FPBDC)]·DMF}n (NKU-FlexMOF-1) (H2FPBDC = 5-(5-fluoropyridin-3-yl)-1,3-benzenedicarboxylic acid) that increases with rising temperature over a practically useful temperature and pressure range is reported along with other small molecule and hydrocarbon sorption isotherms. Single X-ray diffraction studies, temperature-dependent gas sorption isotherms, in situ and variable temperature powder X-ray diffraction experiments, and electronic structure calculations were performed to characterize the conformation-dependent sorption behavior in NKU-FlexMOF-1. In total, the data supports that the atypical sorption behavior is a result of loading-dependent structural changes in the flexible framework of NKU-FlexMOF-1 induced by sorbate-specific guest-framework interactions. The sorbates cause subtle adaptations of the framework distinct to each sorbate providing an induced-fit separation mechanism to resolve chemically similar hydrocarbons through highly specific sorbate-sorbent interactions. The relevant intermolecular contacts are shown to be predominantly repulsion and dispersion interactions. NKU-FlexMOF-1 is also found to be stable in aqueous solutions including toleration of pH changes. These experiments demonstrate the potential of this flexible microporous MOF for cost and energy efficient industrial hydrocarbon separation and purification processes. The efficacy for the separation of C3H6/C3H8 mixtures is explicitly demonstrated using NKU-FlexMOF-1a (i.e., activated NKU-FlexMOF-1) for a particular useful temperature range.

12.
Nat Mater ; 17(12): 1128-1133, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397312

RESUMO

There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal-organic framework [Ca(C4O4)(H2O)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal-organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes.

13.
Mikrochim Acta ; 186(11): 722, 2019 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655901

RESUMO

A nanocomposite was prepared from gold and graphene oxide via one-step electrodeposition and used to modify the surface of a gold electrode (Au-Gr/GE) that was then applied to non-enzymatic determination of glucose. The effects of deposition time and supporting substrate on the morphology, structure, and electrochemical properties of the nanocomposite were optimized. The morphologies and crystal structures were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results indicate that gold nanoparticles grew on the surface of two-dimensional graphene oxide. The electrocatalytic activity of the modified electrode towards glucose oxidation was evaluated by cyclic voltammetry and amperometric methods at pH 7.4. The Au-Gr/GE, typically operated at a potential of 0.00 V (vs. Ag/AgCl), has a linear response in the 0.05-14 mM and 14-42 mM glucose concentration range, high sensitivity (604 and 267 µA cm-2 mM-1) and a low detection limit (12 µM). The modified GE was applied to quantify glucose in sweat where it exhibited excellent sensitivity and accuracy. Graphical abstract The gold electrode modified with a gold-graphene (Au-Gr/GE) is prepared via a direct electrodeposition. The Au-Gr/GE is used for glucose detection in the neutral solution and it can achieve the effect of non-intrusive detection.


Assuntos
Glucose/análise , Ouro/química , Grafite/química , Nanocompostos/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Suor/química
14.
Angew Chem Int Ed Engl ; 58(30): 10209-10214, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31059186

RESUMO

Simultaneous removal of trace amounts of propyne and propadiene from propylene is an important but challenging industrial process. We report herein a class of microporous metal-organic frameworks (NKMOF-1-M) with exceptional water stability and remarkably high uptakes for both propyne and propadiene at low pressures. NKMOF-1-M separated a ternary propyne/propadiene/propylene (0.5 : 0.5 : 99.0) mixture with the highest reported selectivity for the production of polymer-grade propylene (99.996 %) at ambient temperature, as attributed to its strong binding affinity for propyne and propadiene over propylene. Moreover, we were able to visualize propyne and propadiene molecules in the single-crystal structure of NKMOF-1-M through a convenient approach under ambient conditions, which helped to precisely understand the binding sites and affinity for propyne and propadiene. These results provide important guidance on using ultramicroporous MOFs as physisorbent materials.

15.
Opt Lett ; 43(22): 5647-5650, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439916

RESUMO

We investigate the effects of photonic crystal structures on radiation imaging properties of a ZnO:Ga image converter. The results show that photonic crystal structures can regulate luminescence distribution and spatial resolving power, which is caused by the light extraction and the defect scattering of photonic crystal structures. The present investigation confirms that photonic crystals can improve the imaging properties of existing image converters and proposes a new coupling mode between the photonic crystal image converter and back-end optical devices, which is beneficial to the application of photonic crystals in the field of radiation imaging.

16.
Angew Chem Int Ed Engl ; 57(46): 15183-15188, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240522

RESUMO

Separation of propyne/propylene (C3 H4 /C3 H6 ) is more difficult and challenging than that of acetylene/ethylene (C2 H2 /C2 H4 ) because of their closer molecular sizes. A comprehensive screening of a series of metal-organic frameworks with broad types of structures, pore sizes, and functionalities was carried out. UTSA-200 was identified as the best separating material for the removal of trace C3 H4 from C3 H4 /C3 H6 mixtures. Gas sorption isotherms reveal that UTSA-200 exhibits by far the highest C3 H4 adsorption capacity (95 cm3 cm-3 at 0.01 bar and 298 K) and record C3 H4 /C3 H6 selectivity, which was mainly attributed to the suitable dynamic pore size to efficiently block the larger C3 H6 molecule whilst the strong binding sites and pore flexibility capture smaller C3 H4 . This material thus provides record purification capacity for the removal of C3 H4 from a 1:99 (or 0.1:99.9, v/v) C3 H4 /C3 H6 mixture to produce 99.9999 % pure C3 H6 with a productivity of 62.0 (or 142.8) mmol g-1 .

18.
Phys Chem Chem Phys ; 18(19): 13255-66, 2016 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-27118421

RESUMO

The interfacial interaction of uranium mononitride (UN) with water from the environment unavoidably leads to corrosion of nuclear fuels, which affects a lot of processes in the nuclear fuel cycle. In this work, the microscopic adsorption behaviors of water on the UN(001) surface as well as water dissociation and accompanying H2 formation mechanisms have been investigated on the basis of DFT+U calculations and ab initio atomistic thermodynamics. For adsorption of one H2O monomer, the predicted adsorption energies are -0.88, -2.07, and -2.07 eV for the most stable molecular, partially dissociative, and completely dissociative adsorption, respectively. According to our calculations, a water molecule dissociates into OH and H species via three pathways with small energy barriers of 0.78, 0.72, and 0.85 eV, respectively. With the aid of the neighboring H atom, H2 formation through the reaction of H* + OH* can easily occur via two pathways with energy barriers of 0.61 and 0.36 eV, respectively. The molecular adsorption of water shows a slight coverage dependence on the surface while this dependence becomes obvious for partially dissociative adsorption as the water coverage increases from 1/4 to 1 ML. In addition, based on the "ab initio atomistic thermodynamic" simulations, increasing H2O partial pressure will enhance the stability of the adsorbed system and water coverage, while increasing temperature will decrease the H2O coverage. We found that the UN(001) surface reacts easily with H2O at room temperature, leading to dissolution and corrosion of the UN fuel materials.

19.
Dalton Trans ; 53(7): 2957-2963, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38247311

RESUMO

The energy-saving separation of CO2/N2 and CH4/N2 in the energy industry facilitates the reduction of greenhouse gas emissions and replenishes energy resources, but is a challenging separation process. The trade-off between adsorption capacity and selectivity of the adsorbents is one of the key bottlenecks in adsorption separation technologies' large-scale application in the above separation task. Herein, we introduced a series of fluoroborate or fluorosilicate salts (Cu(BF4)2, Zn(BF4)2 and ZnSiF6) into the open coordination nitrogen sites of aluminum-based metal-organic frameworks (MOF-253) to create multiple binding sites to simultaneously enhance the adsorption capacity and selectivity for the target gas. By the synergistic adsorption effect of metal ions (Cu2+ or Zn2+) and fluorinated anions (BF4- or (SiF6)2-), the single-component adsorption capacity and selectivity of salt-modified MOF-253 (MOF-253@Cu(BF4)2, MOF-253@Zn(BF4)2 and MOF-253@ZnSiF6) for CO2 and CH4 were effectively improved when compared to pristine MOF-253 at 298 K and 1 bar. In addition, the salt-modified MOF-253 has a moderate adsorption heat (<30 kJ mol-1) which could be rapidly regenerated at low energy by evacuation desorption. As confirmed by the ambient breakthrough experiments of MOF-253 and MOF-253@ZnSiF6, the real separation performance for both CO2/N2 (1/4) and CH4/N2 (1/4) was obviously improved. This work provides a feasible post-modification strategy on uncoordinated sites of the framework to improve adsorption separation performance and promote the development of ideal adsorbents with a view to realizing their application in the energy industry.

20.
BMJ ; 384: e078581, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443074

RESUMO

OBJECTIVE: To evaluate the diagnostic accuracy and safety of using magnetically guided capsule endoscopy with a detachable string (ds-MCE) for detecting and grading oesophagogastric varices in adults with cirrhosis. DESIGN: Prospective multicentre diagnostic accuracy study. SETTING: 14 medical centres in China. PARTICIPANTS: 607 adults (>18 years) with cirrhosis recruited between 7 January 2021 and 25 August 2022. Participants underwent ds-MCE (index test), followed by oesophagogastroduodenoscopy (OGD, reference test) within 48 hours. The participants were divided into development and validation cohorts in a ratio of 2:1. MAIN OUTCOME MEASURES: The primary outcomes were the sensitivity and specificity of ds-MCE in detecting oesophagogastric varices compared with OGD. Secondary outcomes included the sensitivity and specificity of ds-MCE for detecting high risk oesophageal varices and the diagnostic accuracy of ds-MCE for detecting high risk oesophagogastric varices, oesophageal varices, and gastric varices. RESULTS: ds-MCE and OGD examinations were completed in 582 (95.9%) of the 607 participants. Using OGD as the reference standard, ds-MCE had a sensitivity of 97.5% (95% confidence interval 95.5% to 98.7%) and specificity of 97.8% (94.4% to 99.1%) for detecting oesophagogastric varices (both P<0.001 compared with a prespecified 85% threshold). When using the optimal 18% threshold for luminal circumference of the oesophagus derived from the development cohort (n=393), the sensitivity and specificity of ds-MCE for detecting high risk oesophageal varices in the validation cohort (n=189) were 95.8% (89.7% to 98.4%) and 94.7% (88.2% to 97.7%), respectively. The diagnostic accuracy of ds-MCE for detecting high risk oesophagogastric varices, oesophageal varices, and gastric varices was 96.3% (92.6% to 98.2%), 96.9% (95.2% to 98.0%), and 96.7% (95.0% to 97.9%), respectively. Two serious adverse events occurred with OGD but none with ds-MCE. CONCLUSION: The findings of this study suggest that ds-MCE is a highly accurate and safe diagnostic tool for detecting and grading oesophagogastric varices and is a promising alternative to OGD for screening and surveillance of oesophagogastric varices in patients with cirrhosis. TRIAL REGISTRATION: ClinicalTrials.gov NCT03748563.


Assuntos
Endoscopia por Cápsula , Varizes Esofágicas e Gástricas , Varizes , Adulto , Humanos , Varizes Esofágicas e Gástricas/diagnóstico , Varizes Esofágicas e Gástricas/etiologia , Cirrose Hepática/complicações , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA