Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 437, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061092

RESUMO

BACKGROUND: The oral administration of drugs for treating ulcerative colitis (UC) is hindered by several factors, including inadequate gastrointestinal stability, insufficient accumulation in colonic lesions, and uncontrolled drug release. METHODS: A multiple sensitive nano-delivery system comprising ß-cyclodextrin (CD) and 4-(hydroxymethyl)phenylboronic acid (PAPE) with enzyme/reactive oxygen species (ROS) sensitivity was developed to load celastrol (Cel) as a comprehensive treatment for UC. RESULTS: Owing to the positive charge in the site of inflamed colonic mucosa, the negatively charged nanomedicine (Cel/NPs) could efficiently accumulate. Expectedly, Cel/NPs showed excellent localization ability to colon in vitro and in vivo tests. The elevated concentration of ROS and intestinal enzymes in the colon microenvironment quickly break the CD, resulting in Cel release partially to rebalance microbiota and recover the intestinal barrier. The accompanying cellular internalization of residual Cel/NPs, along with the high concentration of cellular ROS to trigger Cel burst release, could decrease the expression of inflammatory cytokines, inhibit colonic cell apoptosis, promote the macrophage polarization, scavenge ROS, and regulate the TLR4/NF-κB signaling pathway, which certified that Cel/NPs possessed a notably anti-UC therapy outcome. CONCLUSIONS: We provide a promising strategy for addressing UC symptoms via an enzyme/ROS-sensitive oral platform capable of releasing drugs on demand.


Assuntos
Colite Ulcerativa , Triterpenos Pentacíclicos , Espécies Reativas de Oxigênio , Colite Ulcerativa/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/uso terapêutico , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Humanos , Nanopartículas/química , beta-Ciclodextrinas/química , Masculino , Células RAW 264.7 , Inflamação/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Colo/metabolismo , Colo/efeitos dos fármacos , Liberação Controlada de Fármacos , Camundongos Endogâmicos C57BL , Triterpenos/farmacologia , Triterpenos/química , Sistemas de Liberação de Fármacos por Nanopartículas/química , Mucosa Intestinal/metabolismo
2.
Int J Biol Macromol ; 281(Pt 1): 136096, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39353524

RESUMO

Low concentrations or limited residence times in tumor tissues, making celastrol (Cel) difficult to exert significant therapeutic effects. Thus, we developed Zein/hyaluronic acid core-shell nanoparticles (Cel/Zein@HA NPs) for active targeted delivery of Cel via CD44 receptor over-expression on cancer cells, which may strengthen the therapeutic efficacy of Cel and improve delivery targeting. Cel-loaded Zein nanoparticles (core), are elegantly enveloped by a hydrophilic HA coating that forms the shell, resulting in significantly improved encapsulation efficiency and ensured good stability. The cellular uptake of Cel/Zein@HA NPs in HepG2 cells was 1.57-fold higher than nontargeting Cel/Zein NPs. Near-infrared fluorescence imaging confirmed the accumulation of Cel/Zein@HA NPs in H22 liver cancer tumors in mice, resulting in effective antitumor effects and good biosafety. Besides, in vitro and in vivo experiments showed that compared with Cel/Zein NPs, Cel/Zein@HA NPs had more efficient inhibitory effect on tumor proliferation and lower systemic toxicity. Further studies revealed that Cel/Zein@HA NPs induced apoptosis in hepatocellular carcinoma cells by modulating Bax and Bcl-2 expression, while also inhibiting tumor angiogenesis by decreasing CD31 and VEGF levels. Overall, this study presents a promising strategy for enhancing targeted liver cancer therapy through the utilization of biopolymer nanoparticle-based nano-pharmaceuticals that facilitate CD44-mediated cellular uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA