Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 337, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475819

RESUMO

BACKGROUND: The presence of heterogeneity is a significant attribute within the context of ovarian cancer. This study aimed to assess the predictive accuracy of models utilizing quantitative 18F-FDG PET/CT derived inter-tumor heterogeneity metrics in determining progression-free survival (PFS) and overall survival (OS) in patients diagnosed with high-grade serous ovarian cancer (HGSOC). Additionally, the study investigated the potential correlation between model risk scores and the expression levels of p53 and Ki-67. METHODS: A total of 292 patients diagnosed with HGSOC were retrospectively enrolled at Shengjing Hospital of China Medical University (median age: 54 ± 9.4 years). Quantitative inter-tumor heterogeneity metrics were calculated based on conventional measurements and texture features of primary and metastatic lesions in 18F-FDG PET/CT. Conventional models, heterogeneity models, and integrated models were then constructed to predict PFS and OS. Spearman's correlation coefficient (ρ) was used to evaluate the correlation between immunohistochemical scores of p53 and Ki-67 and model risk scores. RESULTS: The C-indices of the integrated models were the highest for both PFS and OS models. The C-indices of the training set and testing set of the integrated PFS model were 0.898 (95% confidence interval [CI]: 0.881-0.914) and 0.891 (95% CI: 0.860-0.921), respectively. For the integrated OS model, the C-indices of the training set and testing set were 0.894 (95% CI: 0.871-0.917) and 0.905 (95% CI: 0.873-0.936), respectively. The integrated PFS model showed the strongest correlation with the expression levels of p53 (ρ = 0.859, p < 0.001) and Ki-67 (ρ = 0.829, p < 0.001). CONCLUSIONS: The models based on 18F-FDG PET/CT quantitative inter-tumor heterogeneity metrics exhibited good performance for predicting the PFS and OS of patients with HGSOC. p53 and Ki-67 expression levels were strongly correlated with the risk scores of the integrated predictive models.


Assuntos
Neoplasias Ovarianas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Fluordesoxiglucose F18 , Estudos Retrospectivos , Antígeno Ki-67/metabolismo , Proteína Supressora de Tumor p53 , Neoplasias Ovarianas/patologia , Prognóstico
2.
BMC Med Imaging ; 23(1): 205, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066434

RESUMO

BACKGROUND: Prostate cancer (PCa) is one of the most common cancers in men worldwide, and its timely diagnosis and treatment are becoming increasingly important. MRI is in increasing use to diagnose cancer and to distinguish between non-clinically significant and clinically significant PCa, leading to more precise diagnosis and treatment. The purpose of this study is to present a radiomics-based method for determining the Gleason score (GS) for PCa using tumour heterogeneity on multiparametric MRI (mp-MRI). METHODS: Twenty-six patients with biopsy-proven PCa were included in this study. The quantitative T2 values, apparent diffusion coefficient (ADC) and signal enhancement rates (α) were calculated using multi-echo T2 images, diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI), for the annotated region of interests (ROI). After texture feature analysis, ROI range expansion and feature filtering was performed. Then obtained data were put into support vector machine (SVM), K-Nearest Neighbor (KNN) and other classifiers for binary classification. RESULTS: The highest classification accuracy was 73.96% for distinguishing between clinically significant (Gleason 3 + 4 and above) and non-significant cancers (Gleason 3 + 3) and 83.72% for distinguishing between Gleason 3 + 4 from Gleason 4 + 3 and above, which was achieved using initial ROIs drawn by the radiologists. The accuracy improved when using expanded ROIs to 80.67% using SVM and 88.42% using Bayesian classification for distinguishing between clinically significant and non-significant cancers and Gleason 3 + 4 from Gleason 4 + 3 and above, respectively. CONCLUSIONS: Our results indicate the research significance and value of this study for determining the GS for prostate cancer using the expansion of the ROI region.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Gradação de Tumores , Teorema de Bayes , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Estudos Retrospectivos
3.
AJR Am J Roentgenol ; 213(2): W66-W75, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31039019

RESUMO

OBJECTIVE. The purpose of this study was to develop a new quantitative image analysis tool for estimating the risk of cancer of the prostate by use of quantitative multiparametric MRI (mpMRI) metrics. MATERIALS AND METHODS. Thirty patients with biopsy-confirmed prostate cancer (PCa) who underwent preoperative 3-T mpMRI were included in the study. Quantitative mpMRI metrics-apparent diffusion coefficient (ADC), T2, and dynamic contrast-enhanced (DCE) signal enhancement rate (α)-were calculated on a voxel-by-voxel basis for the whole prostate and coregistered. A normalized risk value (0-100) for each mpMRI parameter was obtained, with high risk values associated with low T2 and ADC and high signal enhancement rate. The final risk score was calculated as a weighted sum of the risk scores (ADC, 40%; T2, 40%; DCE, 20%). Data from five patients were used as training set to find the threshold for predicting PCa. In the other 25 patients, any region with a minimum of 30 con-joint voxels (≈ 4.8 mm2) with final risk score above the threshold was considered positive for cancer. Lesion-based and sector-based analyses were performed by matching prostatectomyverified malignancy and PCa predicted with the risk analysis tool. RESULTS. The risk map tool had sensitivity of 76.6%, 89.2%, and 100% for detecting all lesions, clinically significant lesions (≥ Gleason 3 + 4), and index lesions, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value for PCa detection for all lesions in the sector-based analysis were 78.9%, 88.5%, 84.4%, and 84.1%, respectively, with an ROC AUC of 0.84. CONCLUSION. The risk analysis tool is effective for detecting clinically significant PCa with reasonable sensitivity and specificity in both peripheral and transition zones.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Biópsia , Meios de Contraste , Imagem de Difusão por Ressonância Magnética , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Medição de Risco , Sensibilidade e Especificidade
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 31(5): 989-93, 2014 Oct.
Artigo em Zh | MEDLINE | ID: mdl-25764709

RESUMO

Pulse waves contain rich physiological and pathological information of the human vascular system. The pulse wave diagnosis systems are very helpful for the clinical diagnosis and treatment of cardiovascular diseases. Accurate pulse waveform is necessary to evaluate the performances of the pulse wave equipment. However, it is difficult to obtain accurate pulse waveform due to several kinds of physiological and pathological conditions for testing and maintaining the pulse wave acquisition devices. A pulse wave generator was designed and implemented in the present study for this application. The blood flow in the vessel was simulated by modeling the cardiovascular system with windkessel model. Pulse waves can be generated based on the vascular systems with four kinds of resistance. Some functional models such as setting up noise types and signal noise ratio (SNR) values were also added in the designed generator. With the need of portability, high speed dynamic response, scalability and low power consumption for the system, field programmable gate array (FPGA) was chosen as hardware platform, and almost all the works, such as developing an algorithm for pulse waveform and interfacing with memory and liquid crystal display (LCD), were implemented under the flow of system on a programmable chip (SOPC) development. When users input in the key parameters through LCD and touch screen, the corresponding pulse wave will be displayed on the LCD and the desired pulse waveform can be accessed from the analog output channel as well. The structure of the designed pulse wave generator is simple and it can provide accurate solutions for studying and teaching pulse waves and the detection of the equipments for acquisition and diagnosis of pulse wave.


Assuntos
Modelos Cardiovasculares , Análise de Onda de Pulso/instrumentação , Algoritmos , Desenho de Equipamento , Frequência Cardíaca , Humanos , Cristais Líquidos , Fluxo Sanguíneo Regional
5.
Heliyon ; 10(1): e23605, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187332

RESUMO

Focal cortical dysplasia (FCD) is a neurological disorder distinguished by faulty brain cell structure and development. Repetitive and uncontrollable seizures may be linked to FCD's aberrant cortical thickness, gyrification, and sulcal depth. Quantitative cortical surface analysis is a crucial alternative to ineffective visual inspection. This study recruited 42 subjects including 22 FCD patients who underwent surgery and 20 healthy controls (HC). For the FCD patients, T1-weighted and PET images were obtained by a PET-MRI scanner, and the confirmed epileptogenic zone (EZ) was collected from postsurgical follow-up. For the HCs, CT and PET images were obtained by a PET-CT scanner. Cortical thickness, gyrification index, and sulcal depth were calculated using a computational anatomical toolbox (CAT12). A cluster-based analysis is carried out to determine each FCD patient's aberrant cortical surface. After parcellating the cerebral cortex into 68 regions by the Desikan-Killiany atlas, a region of interest (ROI) analysis was conducted to know whether the feature in the FCD group is significantly different from that in the HC group. Finally, the features of all ROIs were utilised to train a support vector machine classifier (SVM). The classification performance is evaluated by the leave-one-out cross-validation. The cluster-based analysis can localize the EZ cluster with the highest accuracy of 54.5 % (12/22) for cortical thickness, 40.9 % (9/22) and 13.6 % (3/22) for sulcal depth and gyrification, respectively. Moderate concordance (Kappa, 0.6) is observed between the confirmed EZs and identified clusters by using the cortical thickness. Fair concordance (Kappa, 0.3) and no concordance (Kappa, 0.1) is found by using sulcal depth and gyrification. Significant differences are found in 46 of 68 regions (67.7 %) for the three measures. The trained SVM classifier achieved a prediction accuracy of 95.5 % for the cortical thickness, while the sulcal depth and the gyrification obtained 86.0 % and 81.5 %. Cortical thickness, as determined by quantitative cortical surface analysis of PET data, has a greater ability than sulcal depth and gyrification to locate aberrant EZ clusters in FCD. Surface measures might be different in many regions for FCD and HC. By integrating machine learning and cortical morphologies features, individual prediction of FCD seems to be feasible.

6.
Med Biol Eng Comput ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664348

RESUMO

In the contemporary era, artificial intelligence (AI) has undergone a transformative evolution, exerting a profound influence on neuroimaging data analysis. This development has significantly elevated our comprehension of intricate brain functions. This study investigates the ramifications of employing AI techniques on neuroimaging data, with a specific objective to improve diagnostic capabilities and contribute to the overall progress of the field. A systematic search was conducted in prominent scientific databases, including PubMed, IEEE Xplore, and Scopus, meticulously curating 456 relevant articles on AI-driven neuroimaging analysis spanning from 2013 to 2023. To maintain rigor and credibility, stringent inclusion criteria, quality assessments, and precise data extraction protocols were consistently enforced throughout this review. Following a rigorous selection process, 104 studies were selected for review, focusing on diverse neuroimaging modalities with an emphasis on mental and neurological disorders. Among these, 19.2% addressed mental illness, and 80.7% focused on neurological disorders. It is found that the prevailing clinical tasks are disease classification (58.7%) and lesion segmentation (28.9%), whereas image reconstruction constituted 7.3%, and image regression and prediction tasks represented 9.6%. AI-driven neuroimaging analysis holds tremendous potential, transforming both research and clinical applications. Machine learning and deep learning algorithms outperform traditional methods, reshaping the field significantly.

7.
Front Neurosci ; 17: 1163111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152592

RESUMO

Objective: Epilepsy is considered as a neural network disorder. Seizure activity in epilepsy may disturb brain networks and damage brain functions. We propose using resting-state functional magnetic resonance imaging (rs-fMRI) data to characterize connectivity patterns in drug-resistant epilepsy. Methods: This study enrolled 47 participants, including 28 with drug-resistant epilepsy and 19 healthy controls. Functional and effective connectivity was employed to assess drug-resistant epilepsy patients within resting state networks. The resting state functional connectivity (FC) analysis was performed to assess connectivity between each patient and healthy controls within the default mode network (DMN) and the dorsal attention network (DAN). In addition, dynamic causal modeling was used to compute effective connectivity (EC). Finally, a statistical analysis was performed to evaluate our findings. Results: The FC analysis revealed significant connectivity changes in patients giving 64.3% (18/28) and 78.6% (22/28) for DMN and DAN, respectively. Statistical analysis of FC was significant between the medial prefrontal cortex, posterior cingulate cortex, and bilateral inferior parietal cortex for DMN. For DAN, it was significant between the left and the right intraparietal sulcus and the frontal eye field. For the DMN, the patient group showed significant EC connectivity in the right inferior parietal cortex and the medial prefrontal cortex for the DMN. There was also bilateral connectivity between the medial prefrontal cortex and the posterior cingulate cortex, as well as between the left and right inferior parietal cortex. For DAN, patients showed significant connectivity in the right frontal eye field and the right intraparietal sulcus. Bilateral connectivity was also found between the left frontal eye field and the left intraparietal sulcus, as well as between the right frontal eye field and the right intraparietal sulcus. The statistical analysis of the EC revealed a significant result in the medial prefrontal cortex and the right intraparietal cortex for the DMN. The DAN was found significant in the left frontal eye field, as well as the left and right intraparietal sulcus. Conclusion: Our results provide preliminary evidence to support that the combination of functional and effective connectivity analysis of rs-fMRI can aid in diagnosing epilepsy in the DMN and DAN networks.

8.
Brain Sci ; 11(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916189

RESUMO

The steady-state visual evoked potential (SSVEP), measured by the electroencephalograph (EEG), has high rates of information transfer and signal-to-noise ratio, and has been used to construct brain-computer interface (BCI) spellers. In BCI spellers, the targets of alphanumeric characters are assigned different visual stimuli and the fixation of each target generates a unique SSVEP. Matching the SSVEP to the stimulus allows users to select target letters and numbers. Many BCI spellers that harness the SSVEP have been proposed over the past two decades. Various paradigms of visual stimuli, including the procedure of target selection, layout of targets, stimulus encoding, and the combination with other triggering methods are used and considered to influence on the BCI speller performance significantly. This paper reviews these stimulus paradigms and analyzes factors influencing their performance. The fundamentals of BCI spellers are first briefly described. SSVEP-based BCI spellers, where only the SSVEP is used, are classified by stimulus paradigms and described in chronological order. Furthermore, hybrid spellers that involve the use of the SSVEP are presented in parallel. Factors influencing the performance and visual fatigue of BCI spellers are provided. Finally, prevailing challenges and prospective research directions are discussed to promote the development of BCI spellers.

9.
Front Neurol ; 12: 724680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690915

RESUMO

Refractory epilepsy is a complex case of epileptic disease. The quantitative analysis of fluorodeoxyglucose positron emission tomography (FDG-PET) images complements visual assessment and helps localize the epileptogenic zone (EZ) for better curative treatment. Statistical parametric mapping (SPM) and its computational anatomy toolbox (SPM-CAT) are two commonly applied tools in neuroimaging analysis. This study compares SPM and SPM-CAT with different parameters to find the optimal approach for localizing EZ in refractory epilepsy. The current study enrolled 45 subjects, including 25 refractory epilepsy patients and 20 healthy controls. All of the 25 patients underwent surgical operations. Pathological results and the postoperative outcome evaluation by the Engel scale were likewise presented. SPM and SPM-CAT were used to assess FDG-PET images with three different uncorrected p-values and the corresponding cluster sizes (k), as in voxels in the cluster, namely p < 0.0002, k > 25; p < 0.001, k > 100; p < 0.005, and k > 200. When combining three settings, SPM and SPM-CAT yielded overall positive finding scores of 96.0% (24/25) and 100.0% (25/25) respectively. However, for the individual setting, SPM-CAT achieved the diverse positive finding scores of 96.0% (24/25), 96.0% (24/25), and 88.0% (22/24), which are higher than those of SPM [88.0% (22/25), 76.0% (19/25), and 72.0% (18/25)]. SPM and SPM-CAT localized EZ correctly with 28.0% (7/25) and 64.0% (16/25), respectively. SPM-CAT with parameter settings p < 0.0002 and k > 25 yielded a correct localization at 56.0% (14/25), which is slightly higher than that for the other two settings (48.0 and 20.0%). Moderate concordance was found between the confirmed and pre-surgical EZs, identified by SPM-CAT (kappa value = 0.5). Hence, SPM-CAT is more efficient than SPM in localizing EZ for refractory epilepsy by quantitative analysis of FDG-PET images. SPM-CAT with the setting of p < 0.0002 and k > 25 might perform as an objective complementary tool to the visual assessment for EZ localization.

10.
Front Psychiatry ; 10: 371, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244688

RESUMO

Subclinical depression (SD) has been considered as the precursor to major depressive disorder. Accurate prediction of SD and identification of its etiological origin are urgent. Bursts within the lateral habenula (LHb) drive depression in rats, but whether dysfunctional LHb is associated with SD in human is unknown. Here we develop connectome-based biomarkers which predict SD and identify dysfunctional brain regions and connections. T1 weighted images and resting-state functional MRI (fMRI) data were collected from 34 subjects with SD and 40 healthy controls (HCs). After the brain is parcellated into 48 brain regions (246 subregions) using the human Brainnetome Atlas, the functional network of each participant is constructed by calculating the correlation coefficient for the time series of fMRI signals of each pair of subregions. Initial candidates of abnormal connections are identified by the two-sample t-test and input into Support Vector Machine models as features. A total of 24 anatomical-region-based models, 231 sliding-window-based models, and 100 random-selection-based models are built. The performance of these models is estimated through leave-one-out cross-validation and evaluated by measures of accuracy, sensitivity, confusion matrix, receiver operating characteristic curve, and the area under the curve (AUC). After confirming the region with the highest accuracy, subregions within the thalamus and connections associated with subregions of LHb are compared. It is found that five prediction models using connections of the thalamus, posterior superior temporal sulcus, cingulate gyrus, superior parietal lobule, and superior frontal gyrus achieve an accuracy >0.9 and an AUC >0.93. Among 90 abnormal connections associated with the thalamus, the subregion of the right posterior parietal thalamus where LHb is located has the most connections (n = 18), the left subregion only has 3 connections. In SD group, 10 subregions in the thalamus have significantly different node degrees with those in the HC group, while 8 subregions have lower degrees ( p < 0.01), including the one with LHb. These results implicate abnormal brain connections associated with the thalamus and LHb to be associated with SD. Integration of these connections by machine learning can provide connectome-based biomarkers to accurately diagnose SD.

11.
Abdom Radiol (NY) ; 44(6): 2233-2243, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30955071

RESUMO

PURPOSE: This study investigates the multiparametric MRI (mpMRI) appearance of different types of benign prostatic hyperplasia (BPH) and whether quantitative mpMRI is effective in differentiating between prostate cancer (PCa) and BPH. MATERIALS AND METHODS: Patients (n = 60) with confirmed PCa underwent preoperative 3T MRI. T2-weighted, multi-echo T2-weighted, diffusion weighted and dynamic contrast enhanced images (DCE) were obtained prior to undergoing prostatectomy. PCa and BPH (cystic, glandular or stromal) were identified in the transition zone and matched with MRI. Quantitative mpMRI metrics: T2, ADC and DCE-MRI parameters using an empirical mathematical model were measured. RESULTS: ADC values were significantly lower (p < 0.001) in PCa compared to all BPH types and can differentiate between PCa and BPH with high accuracy (AUC = 0.87, p < 0.001). T2 values were significantly lower (p < 0.001) in PCa compared to cystic BPH only, while glandular (p = 0.27) and stromal BPH (p = 0.99) showed no significant difference from PCa. BPH mimics PCa in the transition zone on DCE-MRI evidenced by no significant difference between them. mpMRI values of glandular (ADC = 1.31 ± 0.22 µm2/ms, T2 = 115.7 ± 37.3 ms) and cystic BPH (ADC = 1.92 ± 0.43 µm2/ms, T2 = 242.8 ± 117.9 ms) are significantly different. There was no significant difference in ADC (p = 0.72) and T2 (p = 0.46) between glandular and stromal BPH. CONCLUSIONS: Multiparametric MRI and specifically quantitative ADC values can be used for differentiating PCa and BPH, improving PCa diagnosis in the transition zone. However, DCE-MRI metrics are not effective in distinguishing PCa and BPH. Glandular BPH are not hyperintense on ADC and T2 as previously thought and have similar quantitative mpMRI measurements to stromal BPH. Glandular and cystic BPH appear differently on mpMRI and are histologically different.


Assuntos
Imageamento por Ressonância Magnética/métodos , Hiperplasia Prostática/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Meios de Contraste , Diagnóstico Diferencial , Imagem de Difusão por Ressonância Magnética , Humanos , Masculino , Pessoa de Meia-Idade , Prostatectomia , Hiperplasia Prostática/cirurgia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos
12.
Tomography ; 5(2): 260-265, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31245547

RESUMO

Accurately measuring arterial input function (AIF) is essential for quantitative analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). We used the indicator dilution principle to evaluate the accuracy of AIF measured directly from an artery following a low-dose contrast media ultrafast DCE-MRI. In total, 15 patients with biopsy-confirmed localized prostate cancers were recruited. Cardiac MRI (CMRI) and ultrafast DCE-MRI were acquired on a Philips 3 T Ingenia scanner. The AIF was measured at iliac arties following injection of a low-dose (0.015 mmol/kg) gadolinium (Gd) contrast media. The cardiac output (CO) from CMRI (COCMRI) was calculated from the difference in ventricular volume at diastole and systole measured on the short axis of heart. The CO from DCE-MRI (CODCE) was also calculated from the AIF and dose of the contrast media used. A correlation test and Bland-Altman plot were used to compare COCMRI and CODCE. The average (±standard deviation [SD]) area under the curve measured directly from local AIF was 0.219 ± 0.07 mM·min. The average (±SD) COCMRI and CODCE were 6.52 ± 1.47 L/min and 6.88 ± 1.64 L/min, respectively. There was a strong positive correlation (r = 0.82, P < .01) and good agreement between COCMRI and CODCE. The CODCE is consistent with the reference standard COCMRI. This indicates that the AIF can be measured accurately from an artery with ultrafast DCE-MRI following injection of a low-dose contrast media.


Assuntos
Meios de Contraste/administração & dosagem , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Humanos , Técnicas de Diluição do Indicador , Masculino , Pessoa de Meia-Idade , Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
13.
Phys Med Biol ; 64(15): 155012, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31220816

RESUMO

The Tofts pharmacokinetic model requires multiple calculations for analysis of dynamic contrast enhanced (DCE) MRI. In addition, the Tofts model may not be appropriate for the prostate. This can result in error propagation that reduces the accuracy of pharmacokinetic measurements. In this study, we present a compact solution allowing estimation of physiological parameters K trans and v e from ultrafast DCE acquisitions, without fitting DCE-MRI data to the standard Tofts pharmacokinetic model. Since the standard Tofts model can be simplified to the Patlak model at early times when contrast efflux from the extravascular extracellular space back to plasma is negligible, K trans can be solved explicitly for a specific time. Further, v e can be estimated directly from the late steady-state signal using the derivative form of Tofts model. Ultrafast DCE-MRI data were acquired from 18 prostate cancer patients on a Philips Achieva 3T-TX scanner. Regions-of-interest (ROIs) for prostate cancer, normal tissue, gluteal muscle, and iliac artery were manually traced. The contrast media concentration as function of time was calculated over each ROI using gradient echo signal equation with pre-contrast tissue T1 values, and using the 'reference tissue' model with a linear approximation. There was strong correlation (r = 0.88-0.91, p  < 0.0001) between K trans extracted from the Tofts model and K trans estimated from the compact solution for prostate cancer and normal tissue. Additionally, there was moderate correlation (r = 0.65-0.73, p  < 0.0001) between extracted versus estimated v e. Bland-Altman analysis showed moderate to good agreement between physiological parameters extracted from the Tofts model and those estimated from the compact solution with absolute bias less than 0.20 min-1 and 0.10 for K trans and v e, respectively. The compact solution may decrease systematic errors and error propagation, and could increase the efficiency of clinical workflow. The compact solution requires high temporal resolution DCE-MRI due to the need to adequately sample the early phase of contrast media uptake.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
14.
Australas Phys Eng Sci Med ; 41(2): 507-518, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29569210

RESUMO

Due to large inter- and intra-patient variabilities of arterial input functions (AIFs), accurately modeling and using patient-specific AIF are very important for quantitative analysis of dynamic contrast enhanced MRI. Computer simulations were performed to evaluate and compare nine population AIF models with the Parker AIF used as 'gold standard'. The Parker AIF was calculated with a temporal resolution of 1.5 s, and then the other nine AIF models were used to fit the Parker AIF. A total of 100 randomly generated volume transfer constants (Ktrans) and distribution volumes (ve) were used to calculate the contrast agent concentration curves based on the Parker AIF and the extended Tofts model with blood plasma volume (vp) = 0.0, 0.01, 0.05 and 0.10. Subsequently, nine AIF models were used to fit these curves to extract physiological parameters (Ktrans, ve and vp). The agreements between generated and extracted Ktrans and ve values were evaluated using Bland-Altman analysis. The effects of the second pass of the Parker AIF model with and without adding Rician noise on extracted physiological parameters were evaluated by 1000 simulations using one of the nine mathematical AIF models closest to the Parker model with the smallest number of parameters. The results demonstrated that a six-parameter linear function plus bi-exponential function AIF model was almost equivalent to the Parker AIF and that the corresponding generated and extracted Ktrans and ve were in excellent agreements. The effects of the second pass of contrast agent circulation were small on extracted physiological parameters using the extended Tofts model, unless noise was added with signal to noise ratio less than 10 dB.


Assuntos
Algoritmos , Artérias/diagnóstico por imagem , Artérias/fisiologia , Simulação por Computador , Meios de Contraste/química , Imageamento por Ressonância Magnética , Modelos Teóricos , Humanos , Razão Sinal-Ruído
15.
Invest Radiol ; 53(10): 609-615, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29702525

RESUMO

OBJECTIVES: This study investigates whether administration of low doses of gadolinium-based contrast agent (GBCA) for dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) can be as effective as a standard dose in distinguishing prostate cancer (PCa) from benign tissue. In addition, we evaluated the combination of kinetic parameters from the low- and high-dose injection as a new diagnostic marker. MATERIALS AND METHODS: Patients (n = 17) with histologically confirmed PCa underwent preoperative 3 T MRI. Dynamic contrast-enhanced MRI images were acquired at 8.3-second temporal resolution with a low dose (0.015 mmol/kg) and close to the standard dose (0.085 mmol/kg) of gadobentate dimeglumine bolus injections. Low-dose images were acquired for 3.5 minutes, followed by a 5-minute gap before acquiring standard dose images for 8.3 minutes. The data were analyzed qualitatively to investigate whether lesions could be detected based on early focal enhancement and quantitatively by fitting signal intensity as a function of time with an empirical mathematical model to obtain a maximum enhancement projection (MEP) and signal enhancement rate (α). RESULTS: Both low- and standard-dose DCE-MRI showed similar sensitivity (13/26 = 50%) and lesion conspicuity score (4.0 ± 1.0 vs 4.2 ± 0.9; P = 0.317) for PCa diagnosis on qualitative analysis. Prostate cancer showed significantly increased α compared with benign tissue for low (9.98 ± 5.84 vs 5.12 ± 2.95 s) but not for standard (4.27 ± 2.20 vs 3.35 ± 1.48 s) dose. The ratio of low-dose α to standard-dose α was significantly greater (P = 0.02) for PCa (2.8 ± 2.3) than for normal prostate (1.6 ± 0.9), suggesting changes in water exchange and T2* effects associated with cancer. In addition, decreases in the percentage change in T1 relaxation rate as a function of increasing contrast media concentration (ie, the "saturation effect") can also contribute to the observed differences in high-dose and low-dose α. Area under the receiver operating characteristic curve for differentiating PCa from benign tissue using α was higher for low dose (0.769) compared with standard dose (0.625). There were no significant differences between MEP calculated for PCa and normal tissue at the low and standard doses. Moderate significant Pearson correlation for DCE parameters, MEP (r = 0.53) and α (r = 0.58), was found between low and standard doses of GBCA. CONCLUSIONS: These preliminary results suggest that DCE-MRI with a low GBCA dose distinguishes PCa from benign prostate tissue more effectively than does the standard GBCA dose, based on signal enhancement rate. Diagnostic accuracy is similar on qualitative assessment. Prostate cancer diagnosis may be feasible with DCE-MRI with low-dose GBCA. In addition, comparison of enhancement kinetics after low and high doses of contrast media may provide diagnostically useful information.


Assuntos
Meios de Contraste/administração & dosagem , Gadolínio/administração & dosagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Estudos de Viabilidade , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Curva ROC
16.
PLoS One ; 13(1): e0190929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324859

RESUMO

The effects of consumption of different diets on the fatty acid composition in the mammary glands of SV40 T-antigen (Tag) transgenic mice, a well-established model of human triple-negative breast cancer, were investigated with magnetic resonance spectroscopy and spectroscopic imaging. Female C3(1) SV40 Tag transgenic mice (n = 12) were divided into three groups at 4 weeks of age: low fat diet (LFD), high animal fat diet (HAFD), and high fructose diet (HFruD). MRI scans of mammary glands were acquired with a 9.4 T scanner after 8 weeks on the diet. 1H spectra were acquired using point resolved spectroscopy (PRESS) from two 1 mm3 boxes on each side of inguinal mammary gland with no cancers, lymph nodes, or lymph ducts. High spectral and spatial resolution (HiSS) images were also acquired from nine 1-mm slices. A combination of Gaussian and Lorentzian functions was used to fit the spectra. The percentages of poly-unsaturated fatty acids (PUFA), mono-unsaturated fatty acids (MUFA), and saturated fatty acids (SFA) were calculated from each fitted spectrum. Water and fat peak height images (maps) were generated from HiSS data. The results showed that HAFD mice had significantly lower PUFA than both LFD (p < 0.001) and HFruD (p < 0.01) mice. The mammary lipid quantity calculated from 1H spectra was much larger in HAFD mice than in LFD (p = 0.03) but similar to HFruD mice (p = 0.10). The average fat signal intensity over the mammary glands calculated from HiSS fat maps was ~60% higher in HAFD mice than in LFD (p = 0.04) mice. The mean or median of calculated parameters for the HFruD mice were between those for LFD and HAFD mice. Therefore, PRESS spectroscopy and HiSS MRI demonstrated water and fat composition changes in mammary glands due to a Western diet, which was low in potassium, high in sodium, animal fat, and simple carbohydrates. Measurements of PUFA with MRI could be used to evaluate cancer risk, improve cancer detection and diagnosis, and guide preventative therapy.


Assuntos
Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Açúcares da Dieta , Ácidos Graxos/metabolismo , Glândulas Mamárias Animais/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Animais , Feminino , Frutose , Imageamento por Ressonância Magnética , Glândulas Mamárias Animais/diagnóstico por imagem , Camundongos Transgênicos , Distribuição Aleatória
17.
Acad Radiol ; 25(3): 349-358, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29167070

RESUMO

RATIONALE AND OBJECTIVES: This study aimed to test high temporal resolution dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for different zones of the prostate and evaluate its performance in the diagnosis of prostate cancer (PCa). Determine whether the addition of ultrafast DCE-MRI improves the performance of multiparametric MRI. MATERIALS AND METHODS: Patients (n = 20) with pathologically confirmed PCa underwent preoperative 3T MRI with T2-weighted, diffusion-weighted, and high temporal resolution (~2.2 seconds) DCE-MRI using gadoterate meglumine (Guerbet, Bloomington, IN) without an endorectal coil. DCE-MRI data were analyzed by fitting signal intensity with an empirical mathematical model to obtain parameters: percent signal enhancement, enhancement rate (α), washout rate (ß), initial enhancement slope, and enhancement start time along with apparent diffusion coefficient (ADC) and T2 values. Regions of interests were placed on sites of prostatectomy verified malignancy (n = 46) and normal tissue (n = 71) from different zones. RESULTS: Cancer (α = 6.45 ± 4.71 s-1, ß = 0.067 ± 0.042 s-1, slope = 3.78 ± 1.90 s-1) showed significantly (P <.05) faster signal enhancement and washout rates than normal tissue (α = 3.0 ± 2.1 s-1, ß = 0.034 ± 0.050 s-1, slope = 1.9 ± 1.4 s-1), but showed similar percentage signal enhancement and enhancement start time. Receiver operating characteristic analysis showed area under the curve for DCE parameters was comparable to ADC and T2 in the peripheral (DCE 0.67-0.82, ADC 0.80, T2 0.89) and transition zones (DCE 0.61-0.72, ADC 0.69, T2 0.75), but higher in the central zone (DCE 0.79-0.88, ADC 0.45, T2 0.45) and anterior fibromuscular stroma (DCE 0.86-0.89, ADC 0.35, T2 0.12). Importantly, combining DCE with ADC and T2 increased area under the curve by ~30%, further improving the diagnostic accuracy of PCa detection. CONCLUSION: Quantitative parameters from empirical mathematical model fits to ultrafast DCE-MRI improve diagnosis of PCa. DCE-MRI with higher temporal resolution may capture clinically useful information for PCa diagnosis that would be missed by low temporal resolution DCE-MRI. This new information could improve the performance of multiparametric MRI in PCa detection.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Meios de Contraste , Humanos , Masculino , Meglumina , Pessoa de Meia-Idade , Compostos Organometálicos , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Curva ROC
18.
Phys Med Biol ; 62(18): N445-N459, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28786402

RESUMO

Differences between region-of-interest (ROI) and pixel-by-pixel analysis of dynamic contrast enhanced (DCE) MRI data were investigated in this study with computer simulations and pre-clinical experiments. ROIs were simulated with 10, 50, 100, 200, 400, and 800 different pixels. For each pixel, a contrast agent concentration as a function of time, C(t), was calculated using the Tofts DCE-MRI model with randomly generated physiological parameters (K trans and v e) and the Parker population arterial input function. The average C(t) for each ROI was calculated and then K trans and v e for the ROI was extracted. The simulations were run 100 times for each ROI with new K trans and v e generated. In addition, white Gaussian noise was added to C(t) with 3, 6, and 12 dB signal-to-noise ratios to each C(t). For pre-clinical experiments, Copenhagen rats (n = 6) with implanted prostate tumors in the hind limb were used in this study. The DCE-MRI data were acquired with a temporal resolution of ~5 s in a 4.7 T animal scanner, before, during, and after a bolus injection (<5 s) of Gd-DTPA for a total imaging duration of ~10 min. K trans and v e were calculated in two ways: (i) by fitting C(t) for each pixel, and then averaging the pixel values over the entire ROI, and (ii) by averaging C(t) over the entire ROI, and then fitting averaged C(t) to extract K trans and v e. The simulation results showed that in heterogeneous ROIs, the pixel-by-pixel averaged K trans was ~25% to ~50% larger (p < 0.01) than the ROI-averaged K trans. At higher noise levels, the pixel-averaged K trans was greater than the 'true' K trans, but the ROI-averaged K trans was lower than the 'true' K trans. The ROI-averaged K trans was closer to the true K trans than pixel-averaged K trans for high noise levels. In pre-clinical experiments, the pixel-by-pixel averaged K trans was ~15% larger than the ROI-averaged K trans. Overall, with the Tofts model, the extracted physiological parameters from the pixel-by-pixel averages were larger than the ROI averages. These differences were dependent on the heterogeneity of the ROI.


Assuntos
Algoritmos , Meios de Contraste/metabolismo , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/patologia , Animais , Simulação por Computador , Gadolínio DTPA , Masculino , Neoplasias da Próstata/metabolismo , Ratos , Razão Sinal-Ruído
19.
Med Eng Phys ; 48: 142-149, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28690044

RESUMO

The purpose of this study was to analyze and compare a series of measured radial pulse waves as a function of contact pressure for young and old healthy volunteers, and old patients with cardiovascular disease. The radial pulse waves were detected with a pressure sensor and the contact pressure of the sensor was incremented by 20gf during the signal acquisition. A mathematical model of radial pulse waveform was developed by using two Gaussian functions modulated by radical functions and used to fit the pulse waveforms. Then, a ratio of area (rA) and a ratio of peak height (rPH) between percussion wave and dicrotic wave as a function of contact pressure were calculated based on fitted parameters. The results demonstrated that there was a maximum for waveform peak height, a minimum for rA (rAmin) and a minimum for rPH (rPHmin) appeared as contact pressure varied. On average, older patients had higher peak amplitude and a significantly smaller rAmin (p<0.001) and rPHmin (p<0.02) than the young and old volunteers. The rAmin and rPHmin calculated with the mathematical model had moderate to strong positive linear correlations (r=0.66 to 0.84, p<0.006) with those directly calculated without the model. The receiver operating characteristic (ROC) analysis showed that the rAmin calculated with the model and the contact pressure measured at the rAmin had good diagnostic accuracy to distinguish healthy volunteers vs. diseased patients. Therefore, using the mathematical model to quantitatively analyze the radial pulse waveforms as a function of contact pressure could be useful in the diagnosis of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/diagnóstico , Modelos Teóricos , Análise de Onda de Pulso , Punho , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Pressão , Artéria Radial/fisiopatologia , Adulto Jovem
20.
IEEE J Biomed Health Inform ; 21(6): 1599-1606, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28114042

RESUMO

Aortic pulse wave reflects cardiovascular status, but, unlike the peripheral pulse wave, is difficult to be measured reliably using noninvasive techniques. Thus, the estimation of aortic pulse wave from peripheral ones is of great significance. This study proposed an adaptive transfer function (ATF) method to estimate the aortic pulse wave from the brachial pulse wave. Aortic and brachial pulse waves were derived from 26 patients who underwent cardiac catheterization. Generalized transfer functions (GTF) were derived based on the autoregressive exogenous model. Then, the GTF was adapted by its peak resonance frequency. And the optional peak resonance frequency for an individual was determined by regression formulas using brachial systolic blood pressure. The method was validated using the leave-one-out cross validation method. Compared with previous studies, the ATF method showed better performance in estimating the aortic pulse wave and predicting the feature parameters. The prediction error of the aortic systolic blood pressure and pulse pressure were 0.2 ± 3.1 and -0.9 ± 3.1 mmHg, respectively. The percentage errors of augmentation index, percentage notch amplitude, and ejection duration were -2.1 ± 32.7%, 12.4 ± 9.2%, and -2.4 ± 3.3%, respectively.


Assuntos
Aorta/fisiologia , Determinação da Pressão Arterial/métodos , Determinação da Pressão Arterial/normas , Pressão Sanguínea/fisiologia , Processamento de Sinais Assistido por Computador , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA