RESUMO
OBJECTIVE: This study aims to analyze the molecular characteristics of the novel coronavirus (SARS-CoV-2) Omicron variant BA.2.76 in Jining City, China. METHODS: Whole-genome sequencing was performed on 87 cases of SARS-CoV-2 infection. Evolutionary trees were constructed using bioinformatics software to analyze sequence homology, variant sites, N-glycosylation sites, and phosphorylation sites. RESULTS: All 87 SARS-CoV-2 whole-genome sequences were classified under the evolutionary branch of the Omicron variant BA.2.76. Their similarity to the reference strain Wuhan-Hu-1 ranged from 99.72 to 99.74%. In comparison to the reference strain Wuhan-Hu-1, the 87 sequences exhibited 77-84 nucleotide differences and 27 nucleotide deletions. A total of 69 amino acid variant sites, 9 amino acid deletions, and 1 stop codon mutation were identified across 18 proteins. Among them, the spike (S) protein exhibited the highest number of variant sites, and the ORF8 protein showed a Q27 stop mutation. Multiple proteins displayed variations in glycosylation and phosphorylation sites. CONCLUSION: SARS-CoV-2 continues to evolve, giving rise to new strains with enhanced transmission, stronger immune evasion capabilities, and reduced pathogenicity. The application of high-throughput sequencing technologies in the epidemic prevention and control of COVID-19 provides crucial insights into the evolutionary and variant characteristics of the virus at the genomic level, thereby holding significant implications for the prevention and control of the COVID-19 pandemic.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Genômica , China , Aminoácidos , NucleotídeosRESUMO
Seasonal H3N2 influenza virus, known for its rapid evolution, poses a serious threat to human health. This study focuses on analyzing the influenza virus trends in Jining City (2018-2023) and understanding the evolving nature of H3N2 strains. Data on influenza-like cases were gathered from Jining City's sentinel hospitals: Jining First People's Hospital and Rencheng Maternal and Child Health Hospital, using the Chinese Influenza Surveillance Information System. Over the period from 2018 to 2023, 7844 throat swab specimens were assessed using real-time fluorescence quantitative PCR for influenza virus nucleic acid detection. For cases positive for seasonal H3N2 influenza virus, virus isolation was followed by whole genome sequencing. Evolutionary trees were built for the eight gene segments, and protein variation analysis was performed. From 2018 to 2023, influenza-like cases in Jining City represented 6.99% (237 299/3 397 247) of outpatient visits, peaking in December and January. Influenza virus was detected in 15.67% (1229/7844) of cases, primarily from December to February. Notably, no cases were found in the 2020-2021 season. Full genome sequencing was conducted on 70 seasonal H3N2 strains, revealing distinct evolutionary branches across seasons. Significant antigenic site variations in the HA protein were noted. No resistance mutations to inhibitors were found, but some strains exhibited mutations in PA, NS1, PA-X, and PB1-F2. Influenza trends in Jining City saw significant shifts in the 2020-2021 and 2022-2023 seasons. Seasonal H3N2 exhibited rapid evolution. Sustained vigilance is imperative for vaccine updates and antiviral selection.
Assuntos
Genoma Viral , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Filogenia , Estações do Ano , Sequenciamento Completo do Genoma , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , China/epidemiologia , Epidemias , Evolução MolecularRESUMO
Yunnan Province is the major region for coffee (Coffea arabica) cultivation in China, contributing to over 98% of the national yield and total production value (Ma et al. 2022). In May 2023, brown spot symptoms were observed only on the leaves of coffee plants in a field located in Baoshan City (98°52'37.988400"E, 24°58'17.673600"N), Yunnan Province. Notably, brown and irregularly shaped spots initially started on the leaf bases. The spots enlarged and developed concentric rings with dark brown margins, which are often surrounded by yellow halos. Finally, the necrotic spots spread across the entire leaf and caused the leaf to curl and fall off. The incidence of the disease was approximately 3% of the coffee plants (n = 600). The symptomatic leaves collected from 10 plants were sectioned (5 × 5 mm), subjected to surface sterilization with 70% ethanol for 40 s, rinsed with sterile distilled water, air-dried, and transferred to potato dextrose agar (PDA). Fungi with grayish-white, cotton-like aerial mycelia grew after 7 days at 28°C. The older mycelia of these isolates displayed dark gray pigmentation. Single conidia were cultivated on PDA, and 15 morphologically similar monosporic isolates were ultimately obtained. Microscopic observation revealed that these isolates produced branched, septate, transparent and amber mycelium. Brown, elliptical or pear-shaped conidia with 2 to 4 transversal septa and 0 to 3 longitudinal septa, measuring 9.6 to 33.3 long × 6.0 to 15.0 µm wide (n = 30), were observed on potato carrot agar (PCA). Molecular identification of multiple genes, such as ITS (Schoch et al. 2012), RPB2 (O'Donnell et al. 2010) and GAPDH (Berbee et al. 1999), indicated consistent 100% identity among these isolates. Sequences of the representative isolates CFSY1-CFSY5 were deposited in GenBank (acc. nos.: OR351112, PP188577, PP188578, PP294863, PP294864, OR509742, PP215341-PP215344, OR509740 and PP239378-PP239381), revealing 98.35% - 100% homology with distinct Alternaria alternata strains previously deposited in GenBank (acc. nos.: PP110780, MN649031 and OR485338). The multigene phylogenetic analysis positioned isolates CFSY1-CFSY5 within a distinct cluster, alongside diverse A. alternata isolates. Based on morphological and molecular characterizations, the pathogen was identified as A. alternata. To verify its pathogenicity, a conidial suspension (1×106 conidia/mL) of isolate CFSY1 was sprayed on six leaves of three healthy one-year-old C. arabica seedlings. Subsequently, the inoculated seedlings were covered with plastic bags and placed in a growth chamber under controlled conditions (a 14 h daylight period and a 10 h dark period at 28°C). The experiment was repeated three times. After 20 days, typical brown spot symptoms analogous to those originally observed in the field appeared on the leaves in all inoculated plants. Reisolation, morphology identification and DNA sequencing substantiated Koch's postulates. In contrast, control plants treated with sterilized water remained asymptomatic, and no pathogen was reisolated from them. Significantly, A. alternata has been previously reported as the causal agent for leaf spot disease in a diverse variety of woody plant species in China, including Prunus avium (Ahmad et al. 2020), Magnolia grandiflora (Liu et al. 2019) and citrus (Wang et al. 2010). This study represents the first report of brown leaf spot caused by A. alternata specifically on C. arabica in China, enriching the contents of fungal pathogens under Chinese coffee cultivation conditions.
RESUMO
An expedient construction of the 5-6-7 tricyclic core of daphnicyclidin-type alkaloids is described. The synthetically challenging cycloheptanone C ring was constructed via a Tiffeneau-Demjanov ring enlargement reaction from a 5-6-6 tricyclic precursor commonly found in calyciphylline A-type alkaloids. Other key transformations included Davis oxidation, 1,2-addition, oxidation, and dehydration to elaborate the essential cyclcohept-2-enone motif.
RESUMO
The formal alkylation reaction of OH groups with diazoalkanes under catalyst-free reaction conditions finds broad application in organic synthesis. However, even today, this reaction is mainly limited to the use of diazomethane as reaction partner. In this combined experimental and theoretical study, we aim at a fundamental understanding of the reaction of diazoalkanes with alcohols to make this transformation amenable to a generalized approach towards formal alkylation reactions of alcohols with diazoalkanes. Experimental and theoretical studies suggest a direct proton transfer only in exceptional cases. In a more general setting, such O-H functionalization proceed both under dark and photochemical conditions via a key hydrogen-bonded singlet carbene intermediate that undergoes a protonation-addition mechanism. We conclude with applications of this approach in O-H functionalization reactions of alcohols, including simple fluorinated, halogenated and aliphatic alcohols and showcase functional-group tolerance of this method in the reaction of biologically active and pharmaceutically relevant alcohols.
RESUMO
L-carnitine is a low molecular weight amino acid that plays an essential role in the oxidation of long-chain fatty acids. The regulatory effects and molecular mechanisms of L-carnitine on fat and protein metabolism in common carp (Cyprinus carpio) were investigated in this study. Common carp (n = 270) were randomly divided into three groups and fed either (1) common carp diet, (2) high-fat/low-protein diet, or (3) L-carnitine-high-fat/low-protein diet. Growth performance, plasma biochemistry, muscle composition, and ammonia excretion rate were all examined after 8 weeks. Additionally, each group's hepatopancreas was subjected to transcriptome analysis. The results showed that decreasing the feed protein/fat ratio resulted in a considerable increase in feed conversion ratio and a significant decrease in common carp-specific growth rate to 1.19 ± 0.02 (P < 0.05). Similarly, total plasma cholesterol sharply increased to 10.15 ± 2.07, while plasma urea nitrogen, muscle protein, and ammonia excretion levels dropped (P < 0.05). After adding L-carnitine to the high-fat/low-protein diet, it was found that the specific growth rate and protein content of the dorsal muscle increased significantly (P < 0.05). In contrast, the plasma total cholesterol and ammonia excretion rate decreased considerably at most time points after feeding (P < 0.05). The expression of genes in the hepatopancreas differed substantially between the different groups. Through GO analysis, it was demonstrated that L-carnitine increased the ability of fat decomposition by up-regulating the expression of cpt1 in the hepatopancreas and decreased the expression of fasn and elovl6 to reduce the production and extension of lipids. Simultaneously, mtor was more abundant in the hepatopancreas, implying that L-carnitine can increase protein synthesis. According to the findings, adding L-carnitine to high-fat/low-protein diets can stimulate growth by enhancing lipolysis and protein synthesis.
RESUMO
It is reported herein that by exploiting the commonly shared bicyclic decahydroquinoline motif, a gold-catalyzed enamide-alkyne cycloisomerization reaction is developed to access tricyclic cores in a simple way. These tricyclic cores further serve as an advanced platform for the divergent enantioselective collective total syntheses of five Lycopodium alkaloids, belonging to three different structural types, in a concise and protecting-group-free fashion. The key transformations in the second phase include: 1)â a transannular reductive Heck cyclization for installation of the azepane ring in fawcettidine, fawcettimine, and lycoposerramineâ Q; 2)â a domino Mukaiyama hydration/Grob fragmentation process for construction of the ten-membered lactam system in phlegmariurineâ B; 3)â a Fukuyama one-pot protocol for the construction of the 2-pyridone motif in lycoposerramineâ R. The newly developed strategy is expected to pave the way for the synthesis of other structurally related Lycopodium alkaloids.
Assuntos
Alcaloides , Lycopodium , Alcaloides/química , Ciclização , Lycopodium/química , Estrutura Molecular , EstereoisomerismoRESUMO
We study Arrow's Impossibility Theorem in the quantum setting. Our work is based on the work of Bao and Halpern, in which it is proved that the quantum analogue of Arrow's Impossibility Theorem is not valid. However, we feel unsatisfied about the proof presented in Bao and Halpern's work. Moreover, the definition of Quantum Independence of Irrelevant Alternatives (QIIA) in Bao and Halpern's work seems not appropriate to us. We give a better definition of QIIA, which properly captures the idea of the independence of irrelevant alternatives, and a detailed proof of the violation of Arrow's Impossibility Theorem in the quantum setting with the modified definition.
RESUMO
Si-H insertion reactions represent an important method for the efficient construction of new C-Si bonds, and typically, they are conducted in the presence of metal catalysts. In this report, we describe a photochemical approach that now allows the insertion of carbenes into the Si-H bond of silanes under metal-free reaction conditions (23 examples, up to 83% yield).
RESUMO
Sigmatropic rearrangements are an important fundamental toolbox in organic synthesis to access complex molecular fragments. Yet, the rearrangement reactions of onium ylides via gold catalyzed carbene transfer reactions are relatively unexplored. Herein, we describe a gold-catalyzed sigmatropic rearrangement of sulfonium and selenium ylides (39 examples, up to 99% yield). Furthermore, we report on the limitations of sigmatropic rearrangement reactions of aryl allyl anilines, which deliver exclusively C-H functionalized products.
RESUMO
The long-term goal of our research is to develop a powerful quantum logic which is useful in the formal verification of quantum programs and protocols. In this paper we introduce the basic idea of our categorical logic of quantum programs (CLQP): It combines the logic of quantum programming (LQP) and categorical quantum mechanics (CQM) such that the advantages of both LQP and CQM are preserved while their disadvantages are overcome. We present the syntax, semantics and proof system of CLQP. As a proof-of-concept, we apply CLQP to verify the correctness of Deutsch's algorithm and the concealing property of quantum bit commitment.
RESUMO
BACKGROUND: The identification of inversions of DNA segments shorter than read length (e.g., 100 bp), defined as micro-inversions (MIs), remains challenging for next-generation sequencing reads. It is acknowledged that MIs are important genomic variation and may play roles in causing genetic disease. However, current alignment methods are generally insensitive to detect MIs. Here we develop a novel tool, MID (Micro-Inversion Detector), to identify MIs in human genomes using next-generation sequencing reads. RESULTS: The algorithm of MID is designed based on a dynamic programming path-finding approach. What makes MID different from other variant detection tools is that MID can handle small MIs and multiple breakpoints within an unmapped read. Moreover, MID improves reliability in low coverage data by integrating multiple samples. Our evaluation demonstrated that MID outperforms Gustaf, which can currently detect inversions from 30 bp to 500 bp. CONCLUSIONS: To our knowledge, MID is the first method that can efficiently and reliably identify MIs from unmapped short next-generation sequencing reads. MID is reliable on low coverage data, which is suitable for large-scale projects such as the 1000 Genomes Project (1KGP). MID identified previously unknown MIs from the 1KGP that overlap with genes and regulatory elements in the human genome. We also identified MIs in cancer cell lines from Cancer Cell Line Encyclopedia (CCLE). Therefore our tool is expected to be useful to improve the study of MIs as a type of genetic variant in the human genome. The source code can be downloaded from: http://cqb.pku.edu.cn/ZhuLab/MID .
Assuntos
Algoritmos , Inversão Cromossômica/genética , Sequenciamento de Nucleotídeos em Larga Escala , DNA/química , DNA/genética , DNA/metabolismo , Genoma Humano , Humanos , Internet , Alinhamento de Sequência , Análise de Sequência de DNA , Interface Usuário-ComputadorRESUMO
Fulminates containing the CNO(-) ion have been widely utilized as high-energy density materials (HEDMs) for more than 120 years. Yet no purely covalently bound CNO molecule, i.e., nitrile oxide, is known to behave as an HEDM. In this study, we performed a thorough investigation of the potential energy surface of nitrile oxide ONCNO and related isomers, applying various sophisticated methods including G4, CBS-QB3, W1BD, CCSD(T)/CBS, and CASPT2/CBS. The Gibbs free energy calculations showed that the decomposition of ONCNO to the considerably endothermic products CNO + NO is favored compared to that into the highly exothermic products CO2 + N2. Thus, ONCNO fails to be the long expected nitrile oxide HEDM. However, with the rate-determining barrier of 23.3 kcal mol(-1) at the W1BD level, ONCNO should be experimentally accessible.
RESUMO
OBJECTIVE: To explore the clinical characteristics of the lesions of spinal cord and optic nerve as the onset of neuromyelitis optica (NMO). METHODS: A total of fifty-one patients with myelitis or optic neuritis (ON) as the onset of NMO who hospitalized in our Neurology Department during October 2010 to October 2012 were enrolled in the study. Clinical presentations and MRI findings of the spinal cord and brain were studied. RESULTS: (1) A total of 26 cases (51.0%) presented with myelitis as the index event, in which 30.8% (8/26) were the longitudinally extensive transverse myelitis (LETM) and 69.2% (18/26) were non-LETM (short segmental myelitis or non-transverse myelitis). Patients with non-LETM as the onset were found to have better prognosis than those with LETM (full recovery ratio was 13/18 vs 2/8, P < 0.05), while shorter recurrence interval of myelitis and higher recurrence frequency of events were shown in patients with non-LETM (11.1 vs 18.6 months, 3 times per year vs once per year, with all P < 0.05). (2) A total of 25 cases (49.0%) presented with ON as the index event with 24.0% (6/25) of unilateral ON and 76.0% (19/25) of bilateral ON. Patients with bilateral ON had more severe visual impairment and shorter first remission period than those with unilateral ON (P < 0.05). CONCLUSION: Non-LETM and bilateral ON are the most common index demyelinating events in NMO cases.
Assuntos
Encéfalo/patologia , Doenças Desmielinizantes/imunologia , Mielite Transversa/imunologia , Neuromielite Óptica/complicações , Aquaporina 4/metabolismo , Autoanticorpos/sangue , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Mielite Transversa/diagnóstico , Mielite Transversa/etiologia , Recidiva Local de Neoplasia , Neurite Óptica , PrognósticoRESUMO
One new cyclohexenone derivative, asperfumtone A (1) along with six known compounds were obtained from the coculture of Aspergillus fumigatus and Alternaria alternata associated with Coffea arabica. The configuration of 2 was first reported in the research. The structures were determined by extensive spectroscopic analyses, and ECD calculation. Compounds 3, 4 and 7 showed significant antifungal activities against coffee phytopathogens A. alternata and Fusarium incarnatum with MICs of 1 µg/mL. Compounds 1 and 2 showed weak antifungal activities against A. alternata and F. incarnatum with MICs of 32-64 µg/mL.
Assuntos
Aspergillus fumigatus , Coffea , Antifúngicos/farmacologia , Antifúngicos/química , Técnicas de Cocultura , Alternaria , MitomicinaRESUMO
Diarrhea, often caused by viruses like rotavirus (RV) and norovirus (NV), is a global health concern. This study focuses on RV and NV in Jining City from 2021 to 2022. Between 2021 and 2022, a total of 1052 diarrhea samples were collected. Real-Time Quantitative Fluorescent Reverse Transcriptase-PCR was used to detect RV-A, NV GI, and NV GII. For RV-A-positive samples, VP7 and VP4 genes were sequenced for genotype analysis, followed by the construction of evolutionary trees. Likewise, for NV-GII-positive samples, VP1 and RdRp genes were sequenced for genotypic analysis, and evolutionary trees were subsequently constructed. Between 2021 and 2022, Jining City showed varying detection ratios: RV-A alone (excluding co-infection of RV-A and NV GII) at 7.03%, NV GI at 0.10%, NV GII alone (excluding co-infection of RV-A and NV GII) at 5.42%, and co-infection of RV-A and NV GII at 1.14%. The highest RV-A ratios were shown in children ≤1 year and 2-5 years. Jining, Jinxiang County, and Liangshan County had notably high RV-A ratios at 24.37% (excluding co-infection of RV-A and NV GII) and 18.33% (excluding co-infection of RV-A and NV GII), respectively. Jining, Qufu, and Weishan had no RV-A positives. Weishan showed the highest NV GII ratios at 35.48% (excluding co-infection of RV-A and NV GII). Genotype analysis showed that, in 2021, G9P[8] and G2P[4] were dominant at 94.44% and 5.56%, respectively. In 2022, G8P[8], G9P[8], and G1P[8] were prominent at 75.86%, 13.79%, and 10.35%, respectively. In 2021, GII.3[P12], GII.4[P16], and GII.4[P31] constituted 71.42%, 14.29%, and 14.29%, respectively. In 2022, GII.3[P12] and GII.4[P16] accounted for 55.00% and 45.00%, respectively. RV-A and NV showed varying patterns for different time frames, age groups, and regions within Jining. Genotypic shifts were also observed in prevalent RV-A and NV GII strains in Jining City from 2021 to 2022. Ongoing monitoring of RV-A and NV is recommended for effective prevention and control.
Assuntos
Infecções por Caliciviridae , Diarreia , Genótipo , Norovirus , Filogenia , Infecções por Rotavirus , Rotavirus , Norovirus/genética , Norovirus/classificação , Norovirus/isolamento & purificação , Rotavirus/genética , Rotavirus/classificação , Rotavirus/isolamento & purificação , Humanos , Infecções por Rotavirus/virologia , Infecções por Rotavirus/epidemiologia , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Pré-Escolar , Lactente , Diarreia/virologia , Diarreia/epidemiologia , Criança , China/epidemiologia , Feminino , Coinfecção/virologia , Coinfecção/epidemiologia , Gastroenterite/virologia , Gastroenterite/epidemiologia , Fezes/virologia , Masculino , Adulto , Adolescente , Proteínas do Capsídeo/genética , Recém-Nascido , Adulto Jovem , Pessoa de Meia-IdadeRESUMO
In order to improve the interior sound quality of Electric Vehicles (EV), solve the problem of low sense of power and comfort of the interior sound as well as the large electromagnetic excitation order noise of motor and the sharp interior sound, this article designs a dynamic active sound control system for EV under accelerated driving conditions. Firstly, by comparing and analyzing the sound spectrum characteristics of fuel vehicle (FV) and EV during acceleration, a short-time Fourier transform (STFT) is adopted to extract and synthesize the engine sound. Secondly, the influence of the engine order composition and the energy distribution in the frequency domain on the sound quality of the vehicle is analyzed, and an active control system for sound quality is proposed. And the software and hardware development of the active control sound system is completed. Finally, through real-vehicle testing and verification, the sense of comfort and power of the EV interior sound has been greatly improved during acceleration, and the total value of interior sound can meet the requirement. The sound pressure level and loudness of interior sound have been increased, and the sharpness of the sound inside the vehicle has been improved, with a maximum reduction of 1.0acum.
Assuntos
Automóveis , Som , Ruído , Eletricidade , AceleraçãoRESUMO
Oxidative stress contributes to the pathology of cerebral ischemia/reperfusion (I/R) injury. Galectin-1 has shown an anti-oxidative stress effect. The present study investigated whether this anti-oxidative stress effect can account for the neuroprotective actions of galectin-1 induced by cerebral I/R injury. A cerebral I/R injury model was created in C57Bl/6 mice by transient occlusion of the middle cerebral artery, after which the mice were treated with galectin-1 for 3 days. Infarct volumes were measured. A rotarod test and neurological deficit score assessment was performed to evaluate the neurological deficits. Oxidative stress was evaluated by measuring the levels of reactive oxygen species (ROS) and lipid peroxidation malondialdehyde (MDA), while the anti-oxidative stress status was assessed by measuring molecules such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidation enzyme (GSH-Px) in the ischemic cerebral hemisphere of mice. The inflammatory cytokines, including Interleukin 1 (IL-1), IL-6 and tumor necrosis factor alpha (TNF-α) were measured, and the expression of microglia was evaluated by immunohistochemistry in the ischemic cerebral hemisphere of mice. Galectin-1 treatment ameliorated neurological deficits and reduced infarct volumes in the mice model with cerebral I/R injury. Moreover, it was demonstrated that galectin-1 can significantly alleviate cerebral I/R injury in the ischemic cerebral hemisphere by decreasing the production of ROS and MDA, but increasing the production of CAT, SOD and GSH-Px. Galectin-1 treatment decreased microglia expression, and IL-1, IL-6 and TNF-α levels in the ischemic cerebral hemisphere of mice. Galectin-1 could improve the outcome of cerebral I/R injury by alleviating oxidative stress. Moreover, the neuroprotective effect of galectin-1 in cerebral ischemia could be related to its anti-oxidative stress effect.
RESUMO
Environmental pollution has become an issue of increasing concern in China, owing to the country's rapid economic development. Atmospheric particulate matter (PM) is known to be an important parameter in air quality monitoring; further, bioaerosol forms a crucial component of PM. As the climatic environments in the north and south of Xinjiang, China, are significantly different, here, atmospheric PM samples collected from three cities, Shihezi, Yining, and Tumushuk, located in different directions, were analysed for a better understanding of the spatial distribution patterns of microbial community composition of Xinjiang. The16s rDNA and 18 s rDNA were used to locate bacteria and fungi in PM2.5, PM10, and total suspended particulate matter (TSP) at the species level and genus level, and the microbial communities with the top 15 abundances were selected for analysis. The reports indicate that the most abundant group in Shihezi and Yining was Cenchrus_americanus, which belongs to Proteobacteria. The remaining 14 dominant species had their own distribution pattern in each city. The most dominant strain in Tumushuk was Bacillus_taeanensis, but this strain was not detected in Yining and Shihezi. Similarly, the most predominant fungus in Tumushuk (Microdorylaimus_miser under Myriophyllum) was not detected in the other two cities. The analysis of the effect of environmental impact factors on bacteria and fungi revealed that the impact factors such as temperature, humidity, and wind speed had a greater effect on microorganisms, while O3 had a negative correlation with most microorganisms, owing to its toxicity. Overall, the results of this study show that short-range transported air masses have a greater impact on local pollutants and microorganisms.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Microbiota , Material Particulado/análise , Cidades , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Bactérias , Fungos , Estações do Ano , Monitoramento Ambiental/métodosRESUMO
Nitrification in agricultural soil is an important process for food production. In acidic soil, nitrification is however also considered to be a major source of N2O production. The nitrification rate largely depends on the community composition of ammonia-oxidizing organisms. To obtain a view of the nitrification rates and N2O emission situations in low pH soils in Southern China and understand their relations with the microbial community composition, here we conducted 15N tracer experiments and microorganism community composition analysis using four acidic agricultural soil samples collected in Southern China. A single dominant community (relative abundance >68%) of the ammonia-oxidizing bacteria and ammonia-oxidizing archaea was observed in the soils with pH = 4.81-6.02. A low amount of NO 3 - was produced from the nitrification in the strongly acidic soil (pH = 4.03), and the calculated nitrification rate in this soil was significantly lower than those of other soils with pH = 4.81-6.02. High N2O emissions but low 15N-N2O emissions were observed in the soil with pH = 4.03. Our results suggest that, under aerobic conditions, soil pH is an important factor affecting nitrification through modifying the microorganism composition.