Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 149(5): 1571-1578, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38285427

RESUMO

Paper-based ratiometric fluorescence sensors are normally prepared using two or more types of fluorescent materials on a paper chip for simple, low-cost and fast detection. However, the choice of multi-step and one-step modifications on the paper chip affects the analytical performance. Herein, a novel paper-based dual-emission ratiometric fluorescence sensor was designed for the selective detection of tetracycline (TC). Carbon dots (CDs) modified with Eu3+ were combined with a sealed paper-based microfluidic chip by two methods: one-step grafting of CDs-Eu3+ on paper and step-by-step grafting of CDs and Eu3+ on paper. The analytical performance was studied and optimized respectively. The red fluorescence of Eu3+ at 450 nm is enhanced and the blue fluorescence of CDs at 617 nm is quenched by energy transfer in the presence of TC. Under optimal conditions, TC is selectively determined in the linear range from 0.1 µM to 100 µM with a detection limit of 0.03 µM by the step-by-step grafting method. In addition, the sealed paper chip could effectively prevent pollution and volatilization from the reagent. This technique has been used to analyze TC in seafood aquaculture water with satisfactory results.


Assuntos
Pontos Quânticos , Água , Carbono , Tetraciclina , Antibacterianos , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes , Alimentos Marinhos , Limite de Detecção
2.
Environ Res ; 246: 118132, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218526

RESUMO

Arsenic (As) has been widely detected in surface media on the Qinghai-Tibetan Plateau (QTP); however, the differences in the As distribution and partitioning characteristics between freshwater and saltwater lakes remain poorly understood. To determine the distribution and partitioning characteristics of As, multimedia environmental samples were collected from a typical small watershed consisting of a river, wetland, and both freshwater and saltwater lakes on the QTP. Results showed that freshwater systems, represented by Hurleg Lake, were high in particulate arsenic (PAs) and low in dissolved arsenic (DAs), whereas the saltwater system represented by Tosen Lake, exhibited the reverse distribution. This discrepancy in As distribution was primarily attributed to evaporation enrichment, competitive adsorption of HCO3- and pH variations, as suggested by correlation analysis and stable isotopic composition of water. In the stratified Tosen Lake, an increasing trend of DAs in the water column was observed, potentially driven by the reductive dissolution of Fe (hydr)oxides and bacterial sulfate reduction in the anoxic bottom hypolimnion. Conversely, Hurleg Lake maintained oxic conditions with stable DAs concentrations. Notably, PAs was elevated in the bottom layer of both lakes, possibly due to uptake/adsorption by biogenic particles, as indicated by high levels of chl.α and suspended particulate matter. These findings offer insights into the potential future impact of climate change on As mobilization/redistribution in arid plateau lakes, with implications for management policies that regulate As pollution.


Assuntos
Arsênio , Lagos , Lagos/química , Arsênio/análise , Tibet , Monitoramento Ambiental/métodos , Água , China
3.
Nano Lett ; 23(9): 3887-3896, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37094227

RESUMO

Nafion, as the mostly used proton exchange membrane material in vanadium redox flow batteries (VRFBs), encounters serious vanadium permeation problems due to the large size difference between its anionic nanophase (3-5 nm) and cationic vanadium ions (∼0.6 nm). Bulk hybridization usually suppresses the vanadium permeation at the expense of proton conductivity since conventional additives tend to randomly agglomerate and damage the nanophase continuity from unsuitable sizes and intrinsic incompatibility. Here, we report the ionic-nanophase hybridization strategy of Nafion membranes by using fluorinated block copolymers (FBCs) and polyoxometalates (POMs) as supramolecular patching additives. The cooperative noncovalent interactions among Nafion, interfacial-active FBCs, and POMs can construct a 1 nm-shrunk ionic nanophase with abundant proton transport sites, preserved continuity, and efficient vanadium screeners, which leads to a comprehensive enhancement in proton conductivity, selectivity, and VRFB performance. These results demonstrate the intriguing potential of the supramolecular patching strategy in precisely tuning nanostructured electrolyte membranes for improved performance.

4.
Nano Lett ; 23(22): 10414-10422, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930644

RESUMO

Ion-conducting membranes (ICMs) with high selectivity are important components in redox flow batteries. However it is still a challenge to break the trade-off between ion conductivity and ion selectivity, which can be resolved by the regulation of their nanostructures. Here, polyoxometalate (POM)-hybridized block copolymers (BCPs) are used as self-assembled additives to construct proton-selective nanobarriers in the ICM matrix to improve the microscopic structures and macroscopic properties of ICMs. Benefiting from the co-assembly behavior of BCPs and POMs and their cooperative noncovalent interactions with the polymer matrix, ∼50 nm ellipsoidal functional nanoassemblies with hydrophobic vanadium-shielding cores and hydrophilic proton-conducting shells are constructed in the sulfonated poly(ether ether ketone) matrix, which leads to an overall enhancement of proton conductivity, proton selectivity, and cell performance. These results present a self-assembly route to construct functional nanostructures for the modification of polymer electrolyte membranes toward emerging energy technologies.

5.
Molecules ; 29(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675606

RESUMO

ZnO-CeO2 hollow nanospheres have been successfully synthesized via the hard templating method, in which CeO2 is used as the support skeleton to avoid ZnO agglomeration. The synthesized ZnO-CeO2 hollow nanospheres possess a large electrochemically active area and high electron transfer owing to the high specific surface area and synergistic effect of ZnO and CeO2. Due to the above advantages, the resulting ZnO-CeO2 hollow spheres display high sensitivities of 1122.86 µA mM-1 cm-2 and 908.53 µA mM-1 cm-2 under a neutral environment for the selective detection of dopamine and uric acid. The constructed electrochemical sensor shows excellent selectivity, stability and recovery for the selective analysis of dopamine and uric acid in actual samples. This study provides a valuable strategy for the synthesis of ZnO-CeO2 hollow nanospheres via the hard templating method as electrocatalysts for the selective detection of dopamine and uric acid.

6.
Angew Chem Int Ed Engl ; : e202409006, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896505

RESUMO

Proton exchange membranes with high selectivity are urgently required in energy and electronic technologies. Nafion, a state-of-the-art commercial proton exchange membrane material, faces significant challenges. It suffers from the permeation of undesirable substances, like hydrogen in fuel cells and vanadium ions in redox flow batteries, due to the unmatched sizes between its ionic domains (3~5 nm) and these substances. In this work, we present a supramolecular modification strategy that simultaneously enhances the proton conductivity and selectivity of Nafion. We employ fluoroalkyl-grafted polyoxometalate (POMs) nanoclusters as supramolecular additives to modify Nafion via co-assembly. These POMs can precisely and robustly decorate at Nafion ionic domains, with their fluoroalkyl chains anchoring into the perfluorinated matrix while their inorganic clusters stay in the ionic regions. The hybrid membranes, with continuous proton hopping sites and nanoscale steric hindrance offered by POMs, exhibit a 56% increase in proton conductivity and a 100% improvement in proton/vanadium selectivity. This leads to significantly enhanced power density and energy efficiency in fuel cells and vanadium flow batteries, respectively. These results underscore the intriguing potential of molecular cluster additives in improving the functions of ion-conducting membranes.

7.
Anticancer Drugs ; 34(1): 15-28, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206143

RESUMO

Chordoma is a rare malignant bone tumor originating from the remnants of the notochord. Here, the role of long noncoding LOC554202 in chordoma progression and its associated mechanism were explored. Cell proliferation was analyzed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide and colony formation assays. Flow cytometry was conducted to analyze cell apoptosis rate. The migration and invasion of chordoma cells were analyzed by transwell migration and invasion assays and wound healing assays. A xenograft tumor model was established in nude mice to explore the role of LOC554202 in regulating tumor growth in vivo . The interaction between microRNA-377-3p (miR-377-3p) and LOC554202 or sekelsky mothers against d PP (SMAD) family member 3 (SMAD3) was verified by dual-luciferase reporter and RNA immunoprecipitation assays. The glycolytic rate of chordoma cells was analyzed using glucose assay kit, lactic acid kit and ApoSENSOR ADP/ATP ratio assay kit. LOC554202 expression was upregulated in chordoma tissues and cell lines. LOC554202 silencing suppressed the proliferation, migration and invasion and induced the apoptosis of chordoma cells. LOC554202 knockdown restrained xenograft tumor growth in vivo . miR-377-3p was confirmed as a target of LOC554202, and miR-377-3p silencing largely overturned LOC554202 knockdown-mediated anti-tumor effects in chordoma cells. miR-377-3p interacted with the 3' untranslated region (3'UTR) of SMAD3 and miR-377-3p overexpression-mediated antitumor effects in chordoma cells were largely attenuated by SMAD3 overexpression. LOC554202 could positively regulate SMAD3 expression by sponging miR-377-3p in chordoma cells. LOC554202 contributed to the glycolysis of chordoma cells by targeting binding to miR-377-3p/SMAD3 axis. LOC554202 facilitated the proliferation, migration, invasion and glycolysis and inhibited the apoptosis of chordoma cells by mediating miR-377-3p/SMAD3 axis.


Assuntos
Cordoma , MicroRNAs , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Cordoma/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , RNA Longo não Codificante/genética
8.
Macromol Rapid Commun ; 44(18): e2300223, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37249561

RESUMO

Flexible electrolytes with solid self-supporting properties are highly desired in the fields of energy and electronics. However, traditional flexible electrolytes prepared by doping ionic liquids or salt solutions into a polymer matrix pose a risk of liquid component leakage during device operation. In this work, the development of supramolecular ionic network electrolytes using polyoxometalate nanoclusters as supramolecular crosslinkers to solidify bola-type zwitterionic liquids is reported. The resulting self-supporting electrolytes possess semi-solid features and show a high proton conductivity of 8.2 × 10-4 S cm-1 at low humidity (RH = 30%). Additionally, the electrolytes exhibit a typical plateau region in rheological tests, indicating that their dynamic network structures can contribute mechanical behavior similar to the entangled networks in covalent polymer materials. This work introduces a new paradigm for designing flexible solid electrolytes and expands the concept of reticular chemistry to noncrystalline systems.


Assuntos
Eletrólitos , Prótons , Íons , Polímeros
9.
Environ Res ; 223: 115488, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36781012

RESUMO

Land use change alters the hydrochemical features, nutrient outputs, and community structure of aquatic photosynthetic organisms in watersheds and has an important impact on C, N, and P biogeochemical processes. In shallow water environments, sediments are the most important burial sites for C, N, and P; however, the factors underlying the control of their deposition by land use changes remain unclear. In this study, the relationship among hydrochemical features, aquatic photosynthetic organism community structure, and C, N, and P deposition in surface waters associated with different land uses was studied at the Shawan Karst Water-Carbon Cycle Test Site, Puding, SW China, by combining field monitoring and laboratory experiments performed over a complete hydrological year from September 2018 to August 2019. The results indicate that (1) OC and TN deposition showed small differences among ponds associated with five land uses, while TP was significantly higher in ponds associated with shrubland and grassland than in ponds of cultivated land, bare soil, and bare rock. (2) Cultivated land increased OC and TN deposition by increasing N and P output and planktonic algae biomass in surface waters, while grassland and shrubland ponds mainly by increasing DIC output and macrophyte biomass. (3) Compared with cultivated land, grassland and shrubland significantly enhanced TP deposition by promoting the deposition of calcium-bound P and biogenic P from macrophytes and their epiphytic algae in surface waters. In conclusion, the shift of cultivated land and bare soil to grassland and shrubland may be conducive to the formation of benign aquatic ecosystems and stabilization of C, N, and P sinks in karst shallow surface waters.


Assuntos
Ecossistema , Nitrogênio , Nitrogênio/análise , Solo/química , Carbono/análise , Água/química , China
10.
Pharm Biol ; 61(1): 1343-1363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37623313

RESUMO

CONTEXT: Tormentic acid (TA), an effective triterpenoid isolated from Chaenomeles speciosa (Sweet) Nakai (Rosaceae) fruits, exerts an effective treatment for gastric damage. OBJECTIVE: To investigate the gastroprotective effect of TA on indomethacin (IND) damaged GES-1 cells and rats, and explore potential mechanisms. MATERIALS AND METHODS: TA concentrations of 1.563-25 µM were used. Cell proliferation, apoptosis and migration were performed using MTT, colony formation, wound healing, migration, Hoechst staining assays. SD rats were divided into control, IND, TA (1, 2 and 4 mg/kg) + IND groups, once a day for 21 continuous days. Twenty-four hours after the last administration, all groups except the control group were given IND (100 mg/kg) by gavage. Gastric juice parameters, gastric ulcer, gastric blood flow (GBF), blood biochemical parameters and cytokine analysis and gastric mucosal histopathology were detected for 2 h and 6 h after IND oral administration. The mRNA and protein expression of miR-139 and the CXCR4/CXCL12/PLC/PKC/Rho A/MLC pathway were analyzed in the IND-damaged GES-1 cells and gastric tissue of rats. RESULTS: TA might ameliorate the gastric mucosal injury by accelerating the IND-damaged GES-1 cell proliferation and migration, ameliorating GBF, ulcer area and pathologic changes, the redox system and cytokine levels, the gastric juice parameters, elevating the gastric pH in IND damaged rats; suppressed miR-139 mRNA expression, elevated CXCR4 and CXCL12 mRNA and protein expression, p-PLC, p-PKC, Rho A, MLCK and p-MLC protein expression. DISCUSSION AND CONCLUSIONS: TA may have potential use as a clinical drug candidate for gastric mucosal lesion treatment.


Assuntos
MicroRNAs , Triterpenos , Animais , Ratos , Ratos Sprague-Dawley , Frutas , Triterpenos/farmacologia , Citocinas , Quimiocina CXCL12
11.
J Environ Sci (China) ; 131: 68-83, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37225382

RESUMO

The eutrophication of lakes is a global environmental problem. Regulating nitrogen (N) and phosphorus (P) on phytoplankton is considered to be the most important basis of lake eutrophication management. Therefore, the effects of dissolved inorganic carbon (DIC) on phytoplankton and its role in mitigating lake eutrophication have often been overlooked. In this study, the relationships between phytoplankton and DIC concentrations, carbon isotopic composition, nutrients (N and P), and hydrochemistry in the Erhai Lake (a karst lake) were investigated. The results showed that when the dissolved carbon dioxide (CO2(aq)) concentrations in the water were higher than 15 µmol/L, the productivity of phytoplankton was controlled by the concentrations of TP and TN, especially by that of TP. When the N and P were sufficient and the CO2(aq) concentrations were lower than 15 µmol/L, the phytoplankton productivity was controlled by the concentrations of TP and DIC, especially by that of DIC. Additionally, DIC significantly affected the composition of the phytoplankton community in the lake (p<0.05). When the CO2(aq) concentrations were higher than 15 µmol/L, the relative abundance of Bacillariophyta and Chlorophyta was much higher than those of harmful Cyanophyta. Thus, high concentrations of CO2(aq) can inhibit harmful Cyanophyta blooms. During lake eutrophication, when controlling N and P, an appropriate increase in CO2(aq) concentrations by land-use changes or pumping of industrial CO2 into water may reduce the proportion of harmful Cyanophyta and promote the growth of Chlorophyta and Bacillariophyta, which may provide effectively assist in mitigating water quality deterioration in surface waters.


Assuntos
Cianobactérias , Diatomáceas , Lagos , Fitoplâncton , China , Eutrofização , Fertilização
12.
Phys Chem Chem Phys ; 24(35): 21094-21104, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36018265

RESUMO

Owing to the relatively high carrier mobility and on/off current ratio, monolayered SnS2 has the advantage of suppressing drain-to-source tunneling for short channels, rendering it a promising candidate in field-effect transistor (FET) applications. To extend the scaling limit of the channel length, we propose to rationally modulate the electronic properties of monolayered SnS2 through the customized design of point defects and simulate its performance limit in sub-5 nm double-gate FETs (DGFETs), using density functional theory combined with nonequilibrium Green's function formalism. Among all types of point defects, the Se atom as a substitutional dopant (SeS) can nondegenerately inject electrons into each monolayered (ML) SnS2 2 × 4 × 1 supercell, whereas the Sn vacancy (VSn) defect exhibits an opposite doping effect. By adjusting the lateral Schottky barrier height between electrodes and the channel region, the on-state current (Ion), on/off ratio, delay time, and power-delay product in the formed n-type SeS-doped SnS2 and p-type VSn-doped SnS2 DGFETs with a channel length of 4.5 nm have been remarkably improved, fulfilling the requirements of the International Technology Roadmap for Semiconductors (ITRS) for high-performance applications in the 2028 horizon. Our work unveils the great significance of point defect engineering for applications in ultimately scaled electronics.

13.
Analyst ; 146(20): 6297-6305, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34550118

RESUMO

In this work, zinc-doped carbon dots (Zn-CDs) were anchored on a three-dimensional wheel type paper-based microfluidic chip, and were decorated with 6-mercaptonicotinic acid (MNA) and L-cysteine (L-Cys) for highly sensitive and rapid fluorescence detection of Cu2+. Zn-CDs were first anchored on paper through the amide bonds between the carboxyl groups of the Zn-CDs and the amino groups of the paper. Afterwards, Zn-CDs were decorated with MNA and L-Cys, effectively preventing the Zn-CDs from aggregation. The nitrogen atom on the pyridine ring and the carboxylic acid groups in MNA and L-Cys coordinated with Cu2+ to form a nonfluorescent ground-state complex, causing the fluorescence quenching of the Zn-CDs. The three-dimensional rotary design could simplify the operation process and achieve simultaneous analysis of multiple samples with different concentrations. Under optimal conditions, the fluorescent sensor exhibits linear response for the determination of Cu2+ in the range from 0.1 to 60 µg L-1 with the detection limit (LOD) of 0.018 µg L-1. The proposed strategy provides a novel way for the highly sensitive detection of Cu2+ in a complex water environment.


Assuntos
Carbono , Pontos Quânticos , Cobre , Corantes Fluorescentes , Íons , Espectrometria de Fluorescência , Zinco
14.
Bioorg Med Chem Lett ; 32: 127719, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33253878

RESUMO

The extraction, purification, structure and hepatoprotective activity of a homogenous polysaccharide (SPS60) from Sabia parviflora were investigated. SPS60 was screened after purification with Sephadex G-100 and showed the excellent hepatoprotective activity. Its structural characteristics were investigated by Time of flight mass spectrometry (TOF-MS), PMP Pre-column derivatization-HPLC (PMP-HPLC), nuclear magnetic resonance (NMR) spectroscopy and Atomic Force Microscopy (AFM). The results showed that SPS60 possessed the molecular weight of 16900 Da and the monosaccharide component was glucose, as well as a 1 â†’ 6 glycosidic bond. The results of atomic force microscopy (AFM) show that SPS60 is a blocky sphere in solution. Furthermore, the SPS60 could significantly improve the survival rate of LO2 hepatocytes which were damaged by CCl4. Therefore, SPS60 may be an active substance of S. parviflora as a local functional tea.


Assuntos
Magnoliopsida/metabolismo , Polissacarídeos/química , Substâncias Protetoras/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia
15.
Zhongguo Zhong Yao Za Zhi ; 46(9): 2260-2266, 2021 May.
Artigo em Zh | MEDLINE | ID: mdl-34047129

RESUMO

Non-alcoholic steatohepatitis(NASH) was induced by high-sugar and high-fat diet in mice to investigate the intervention effect of total saponins from Panax japonicus(TSPJ) and explore its possible mechanism. Mice were fed with high-sugar and high-fat diet to establish NASH model, and intervened with different doses of TSPJ(15, 45 mg·kg~(-1)). The animals were fed for 26 weeks. The histomorphology and pathological changes of liver tissues were observed by HE staining. The transcriptional expression levels of miR-199 a-5 p, autophagy related gene 5(ATG5) and inflammatory cytokines interleukin-6(IL-6), interleukin-1ß(IL-1ß) and tumor necrosis factor α(TNF-α) in mouse liver were measured by quantitative Real-time polymerase chain reaction(qRT-PCR). Western blot was used to detect the expression of autophagy-related proteins ATG5, P62/SQSTM1(P62), and microtubule-associated protein light chain 3(LC3)-I/Ⅱ proteins in mouse liver. The expression of P62 protein was detected by immunofluorescence staining. In order to verify the targeting regulation relationship between miR-199 a-5 p and ATG5, miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor were transfected into Hepa 1-6 cells, and the expression of ATG5 mRNA and protein was detected. pMIR-reportor ATG5-3'UTR luciferase reporter gene plasmid was constructed and co-transfected with miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor into Hepa 1-6 cells to detect luciferase activity. In vivo, HE staining in the model group showed typical fatty degeneration and inflammatory infiltration, with increased expression of miR-199 a-5 p and decreased expression of ATG5 mRNA and protein. The expression of autophagy-associated protein P62 increased significantly, the ratio of LC3Ⅱ/Ⅰ decreased, and the transcriptional expression of inflammatory factors increased significantly. After the intervention by TSPJ, the pathological performance of liver tissue was significantly improved, the expression of miR-199 a-5 p decreased and the expression of ATG5 mRNA and protein increased, the expression of autophagy-associated protein P62 decreased significantly, the ratio of LC3Ⅱ/Ⅰ increased, and the transcriptional expression of inflammatory cytokines IL-6, IL-1ß and TNF-α decreased significantly. In vitro, it was found that the expression of ATG5 mRNA and protein and luciferase activity decreased significantly in miR-199 a-5 p overexpression cells, while after inhibition of miR-199 a-5 p expression, the expression level of ATG5 mRNA and protein and luciferase activity increased. The results showed that TSPJ can improve NASH in mice fed with high-sugar and high-fat diet, and its mechanism may be related to the regulation of miR-199 a-5 p/ATG5 signal pathway, the regulation of autophagy activity and the improvement of inflammatory response of NASH.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Panax , Saponinas , Animais , Autofagia , Proteína 5 Relacionada à Autofagia , Camundongos , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Saponinas/farmacologia
16.
J Org Chem ; 85(11): 7485-7493, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32400156

RESUMO

Direct N-glycosylation between glycals and amides/amines was achieved with exclusive stereoselectivity in moderate to high yields. Various amides, amines, and 3,4-O-carbonate-glycals were tolerated, and unique ß-N-glycosides were obtained. The strategy was based on palladium-catalyzed decarboxylative allylation, and the high 1,4-cis-selectivity was proposed because of the hydrogen bonding effect. Notably, all the synthesized products were subjected to preliminary bioactivity studies, revealing that three compounds were cytotoxic to tumor cells and nontoxic to normal human cells.

17.
Macromol Rapid Commun ; 41(24): e2000438, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33000900

RESUMO

The primary issue of polymer electrolytes is to achieve high ion conductivity while retaining mechanical properties. A nanocomposite electrolyte with the inverse hexagonal cylindrical phase (three-dimensionally continuous domains for ion conduction and embedded domains for mechanical support) is prepared through the electrostatic self-assembly of a polyoxometalate (H3 PW12 O40 , PW) and a triblock copolymer poly(N-vinyl pyrrolidone)-block-polystyrene-block-poly(N-vinyl pyrrolidone) (PSP). The cylindrical nanocomposite exhibits a conductivity of 1.32 mS cm-1 and a storage modulus of 4.6 × 107  Pa at room temperature. These two values are higher than those of pristine PSP by two orders of magnitudes and a factor of six, respectively. PW clusters are used as multifunctional nano-additives (morphological inducer, proton conductor, and nano-enhancer) and their incorporation achieves the simultaneous improvement in both conductive and mechanical performance.


Assuntos
Nanocompostos , Compostos de Tungstênio , Eletrólitos , Polímeros
18.
Mikrochim Acta ; 187(4): 205, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152683

RESUMO

A triangular gold nanoplate (AuNPL)-based colorimetric assay is presented for ultrasensitive determination of cupric ions (Cu2+) and mercuric ions (Hg2+) in sequence. AuNPLs were found to be etched efficiently when producing triiodide ions (I3-) by a redox reaction between Cu2+ and iodide ions (I-), leading to a change of the shape of AuNPLs from triangular to sphere along with a color change from blue to pink. In the presence of Hg2+ the etching of AuNPLs was suppressed due to the consumption of I- by the formation of HgI2. With an increase of the concentration of the Hg2+ a transformation from sphere to triangular in the shape of AuNPLs occurred with a color change from pink to blue. The evolution of AuNPLs from etching to anti-etching state by sequential addition of Cu2+ and Hg2+ was accompanied with color variations and band shifts of localized surface plasmon resonance (LSPR), allowing for visual and spectroscopic determination of Cu2+ and Hg2+ successively within 15 min. In the range 0.01-1.5 µM for Cu2+ and 0.02-3.0 µM for Hg2+, the linear relationship between the band shift values and the target ions concentration was found good (R2 > 0.996). The limit of detections (3S/k) was 19 nM for Cu2+ and 9 nM for Hg2+, respectively. The lowest visual estimation concentration was 80 nM for both Cu2+ and Hg2+ through the distinguishable color changes. This system exhibited desirable selectivity for Cu2+ and Hg2+ over other common ions tested. The method has been successfully applied to sequential determination of Cu2+ and Hg2+ in real water and food samples. Graphical abstract Scheme 1 Schematic illustration for sequential detection of Cu2+ and Hg2+ based on etching of AuNPLs.

19.
Zhongguo Zhong Yao Za Zhi ; 45(6): 1433-1439, 2020 Mar.
Artigo em Zh | MEDLINE | ID: mdl-32281358

RESUMO

The aim of this study was to observe the protective effect of water extract from Sabia parviflora on mice with acute liver injury induced by acetaminophen, and investigate its possible mechanism. Fifty-eight Kunming mice were divided into 6 groups, 8 in the normal group, 10 in the model group, 10 in the biphenyl diester group, and 10 each in the low, medium and high dose groups. After adaptive feeding for one week, the mice in normal group were intragastrically administered with an equal volume of 0.5% sodium carboxymethylcellulose sodium(CMC-Na), and the mice in other groups were intragastrically administered with corresponding drugs at 20 mL·kg~(-1) once a day. Then acetaminophen(200 mg·kg~(-1)) was administered after the above drug administration except the normal group. The behavior and signs of the experimental animals were observed every day and the samples were taken for experiments on the next day of the final administration. The liver mass and mass index were calculated. The blood was collected from the abdominal aorta and centrifuged to obtain the serum for detecting aspartate aminotransferase(AST) activity and alanine aminotransferase(ALT) activity. The liver tissue homogenate was used to detect superoxide dismutase(SOD) activity, glutathione(glutathione, r-glutamyl cysteingl+glycine, GSH) activity and malondialdehyde(MDA) content. Liver tissue was analyzed for histological analysis. The results showed that S. parviflora could alleviate the lipid peroxidation damage in the liver caused by acetaminophen, reduce the ALT and AST activities in serum, increase the levels of SOD and GSH in liver tissue, decrease the content of MDA in liver tissue, and inhibit the apoptosis. S. parviflora could also improve the live histopathological profile, protect liver cells and restore liver function. Among them, the high dose had the most significant effect and showed dose-effect relationship. This study indicated that S. parviflora had a significant protective effect on acetaminophen-induced liver injury in mice, and its mechanism may be related to its anti-oxidation effect and inhi-bitory effect on apoptosis.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Fígado/enzimologia , Malondialdeído/análise , Camundongos , Estresse Oxidativo , Superóxido Dismutase/metabolismo
20.
Analyst ; 144(2): 685-690, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30516176

RESUMO

In this work, copper/cuprous oxide (Cu/Cu2O) nanocomposites were electrodeposited on a fluorine doped tin oxide (FTO) glass substrate for sensitive determination of hydrogen peroxide (H2O2). The Cu/Cu2O nanocomposites were synthesized on FTO at a constant current density of -0.4 mA cm-2 in 0.3 M CuSO4 (pH 9.5) under magnetic agitation. The composition and morphology of Cu/Cu2O nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and X-ray photoelectron spectroscopy. Taking advantage of the synergistic effects of Cu and Cu2O, the fabricated Cu/Cu2O/FTO electrode showed excellent electrocatalytic activity towards the oxidation of H2O2. The electrocatalytic performance of Cu/Cu2O/FTO was evaluated by linear sweep voltammetry and amperometry. Under optimized conditions, the developed sensor exhibited a wide linear range of 0.2-2000 µM for the determination of H2O2 with a detection limit of 0.04 µM (S/N = 3). In addition, the proposed H2O2 sensor was successfully applied for the determination of H2O2 in milk samples, indicating that the electrodeposited Cu/Cu2O nanocomposites are promising nanomaterials for electrochemical sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA