Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 600(7887): 49-53, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666337

RESUMO

The distribution of water in the Moon's interior carries implications for the origin of the Moon1, the crystallization of the lunar magma ocean2 and the duration of lunar volcanism2. The Chang'e-5 mission returned some of the youngest mare basalt samples reported so far, dated at 2.0 billion years ago (Ga)3, from the northwestern Procellarum KREEP Terrane, providing a probe into the spatiotemporal evolution of lunar water. Here we report the water abundances and hydrogen isotope compositions of apatite and ilmenite-hosted melt inclusions from the Chang'e-5 basalts. We derive a maximum water abundance of 283 ± 22 µg g-1 and a deuterium/hydrogen ratio of (1.06 ± 0.25) × 10-4 for the parent magma. Accounting for low-degree partial melting of the depleted mantle followed by extensive magma fractional crystallization4, we estimate a maximum mantle water abundance of 1-5 µg g-1, suggesting that the Moon's youngest volcanism was not driven by abundant water in its mantle source. Such a modest water content for the Chang'e-5 basalt mantle source region is at the low end of the range estimated from mare basalts that erupted from around 4.0 Ga to 2.8 Ga (refs. 5,6), suggesting that the mantle source of the Chang'e-5 basalts had become dehydrated by 2.0 Ga through previous melt extraction from the Procellarum KREEP Terrane mantle during prolonged volcanic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA