Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Physiol ; 193(1): 721-735, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37103588

RESUMO

Root-knot nematodes (Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. During infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, near the root vasculature. Previously, we found that nematode perception and early responses in plants were similar to those of microbial pathogens and required the BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 (BAK1/SERK3) coreceptor in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Here, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases to identify additional receptors involved in this process. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single-pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51, and enhanced H2O2 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS bursts were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promoter-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Our results indicate that ERN1 is an important negative regulator of immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Tylenchoidea , Animais , Arabidopsis/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Lectinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Tylenchoidea/fisiologia , Solanum lycopersicum/genética , Receptores Mitogênicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Doenças das Plantas/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853950

RESUMO

Plants encounter various microbes in nature and must respond appropriately to symbiotic or pathogenic ones. In rice, the receptor-like kinase OsCERK1 is involved in recognizing both symbiotic and immune signals. However, how these opposing signals are discerned via OsCERK1 remains unknown. Here, we found that receptor competition enables the discrimination of symbiosis and immunity signals in rice. On the one hand, the symbiotic receptor OsMYR1 and its short-length chitooligosaccharide ligand inhibit complex formation between OsCERK1 and OsCEBiP and suppress OsCERK1 phosphorylating the downstream substrate OsGEF1, which reduces the sensitivity of rice to microbe-associated molecular patterns. Indeed, OsMYR1 overexpression lines are more susceptible to the fungal pathogen Magnaporthe oryzae, whereas Osmyr1 mutants show higher resistance. On the other hand, OsCEBiP can bind OsCERK1 and thus block OsMYR1-OsCERK1 heteromer formation. Consistently, the Oscebip mutant displayed a higher rate of mycorrhizal colonization at early stages of infection. Our results indicate that OsMYR1 and OsCEBiP receptors compete for OsCERK1 to determine the outcome of symbiosis and immunity signals.


Assuntos
Oligossacarídeos/metabolismo , Oryza/metabolismo , Simbiose/imunologia , Adaptação Biológica/imunologia , Adaptação Biológica/fisiologia , Ascomicetos/metabolismo , Quitina/imunologia , Quitosana/imunologia , Regulação da Expressão Gênica de Plantas/genética , Micorrizas/metabolismo , Oligossacarídeos/genética , Oligossacarídeos/imunologia , Oryza/fisiologia , Fosforilação , Imunidade Vegetal/imunologia , Proteínas de Plantas/genética , Transdução de Sinais/genética , Simbiose/fisiologia
3.
Plant Physiol ; 188(4): 2253-2271, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35218352

RESUMO

As a universal second messenger, calcium (Ca2+) transmits specific cellular signals via a spatiotemporal signature generated from its extracellular source and internal stores. Our knowledge of the mechanisms underlying the generation of a Ca2+ signature is hampered by limited tools for simultaneously monitoring dynamic Ca2+ levels in multiple subcellular compartments. To overcome the limitation and to further improve spatiotemporal resolutions, we have assembled a molecular toolset (CamelliA lines) in Arabidopsis (Arabidopsis thaliana) that enables simultaneous and high-resolution monitoring of Ca2+ dynamics in multiple subcellular compartments through imaging different single-colored genetically encoded calcium indicators. We uncovered several Ca2+ signatures in three types of Arabidopsis cells in response to internal and external cues, including rapid oscillations of cytosolic Ca2+ and apical plasma membrane Ca2+ influx in fast-growing Arabidopsis pollen tubes, the spatiotemporal relationship of Ca2+ dynamics in four subcellular compartments of root epidermal cells challenged with salt, and a shockwave-like Ca2+ wave propagating in laser-wounded leaf epidermis. These observations serve as a testimony to the wide applicability of the CamelliA lines for elucidating the subcellular sources contributing to the Ca2+ signatures in plants.


Assuntos
Arabidopsis , Camellia , Arabidopsis/genética , Arabidopsis/metabolismo , Cálcio/metabolismo , Camellia/genética , Camellia/metabolismo , Citosol/metabolismo , Tubo Polínico/metabolismo
4.
Am J Dermatopathol ; 44(3): 179-182, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35171885

RESUMO

ABSTRACT: Primary cutaneous lymphoma occurring at the site of lymphedema is a rare complication. A total of 13 cases of primary cutaneous lymphoma associated with chronic lymphedema have been reported in international studies. We reported a case of cutaneous diffuse large B-cell lymphoma (DLBCL) (leg type) secondary to chronic lymphedema of the lower limbs. Histopathology showed hyperkeratosis of epidermis, acanthosis, and significant edema in the superficial dermis, with diffuse mononuclear infiltration in the dermis. Immunohistochemical studies revealed the expression of CD5, CD20, Pax-5, Bcl-2, Bcl-6, MUM-1, c-myc, and Ki-67. Therefore, the diagnosis of cutaneous DLBCL (leg type) was made. The study further confirmed the association between lymphoma and lymphedema. Especially, it showed CD5 expression. CD5-positive DLBCLs is a specific subgroup of DLBCLs, only approximately 10% of DLBCLs express CD5.


Assuntos
Linfoma Difuso de Grandes Células B/patologia , Neoplasias Cutâneas/patologia , Idoso , Antígenos CD5/metabolismo , Feminino , Humanos , Perna (Membro)/patologia , Linfedema/complicações , Linfoma Difuso de Grandes Células B/complicações , Neoplasias Cutâneas/complicações
5.
New Phytol ; 221(3): 1518-1528, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30357852

RESUMO

We demonstrated previously that expression of Macrosiphum euphorbiae salivary protein Me10 enhanced aphid reproduction on its host tomato (Solanum lycopersicum). However, the mechanism of action of Me10 remained elusive. To confirm the secretion of Me10 by the aphid into plant tissues, we produced Me10 polyclonal antibodies. To identify the plant targets of Me10, we developed a tomato immune induced complementary DNA yeast two-hybrid library and screened it with Me10 as bait. Immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays were performed to validate one of the interactions in planta, and virus-induced gene silencing was used for functional characterization in tomato. We demonstrated that Me10 is secreted into the plant tissues and interacts with tomato 14-3-3 isoform 7 (TFT7) in yeast. Immunoprecipitation assays confirmed that Me10 and its homologue in Aphis gossypii, Ag10k, interact with TFT7 in planta. Further, BiFC revealed that Me10 interaction with TFT7 occurs in the plant cell cytoplasm. While silencing of TFT7 in tomato leaves did not affect tomato susceptibility to M. euphorbiae, it enhanced longevity and fecundity of A. gossypii, the non-host aphid. Our results suggest the model whereby TFT7 plays a role in aphid resistance in tomato and effectors of the Me10/Ag10k family interfere with TFT7 function during aphid infestation.


Assuntos
Proteínas 14-3-3/metabolismo , Afídeos/metabolismo , Resistência à Doença , Doenças das Plantas/parasitologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Animais , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
BMC Genomics ; 19(1): 239, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625550

RESUMO

BACKGROUND: Pathogen perception by plants is mediated by plasma membrane-localized immune receptors that have varied extracellular domains. Lectin receptor kinases (LecRKs) are among these receptors and are subdivided into 3 classes, C-type LecRKs (C-LecRKs), L-type LecRKs (L-LecRKs) and G-type LecRKs (G-LecRKs). While C-LecRKs are represented by one or two members in all plant species investigated and have unknown functions, L-LecRKs have been characterized in a few plant species and have been shown to play roles in plant defense against pathogens. Whereas Arabidopsis G-LecRKs have been characterized, this family of LecRKs has not been studied in tomato. RESULTS: This investigation updates the current characterization of Arabidopsis G-LecRKs and characterizes the tomato G-LecRKs, using LecRKs from the monocot rice and the basal eudicot columbine to establish a basis for comparisons between the two core eudicots. Additionally, revisiting parameters established for Arabidopsis nomenclature for LecRKs is suggested for both Arabidopsis and tomato. Moreover, using phylogenetic analysis, we show the relationship among and between members of G-LecRKs from all three eudicot plant species. Furthermore, investigating presence of motifs in G-LecRKs we identified conserved motifs among members of G-LecRKs in tomato and Arabidopsis, with five present in at least 30 of the 38 Arabidopsis members and in at least 45 of the 73 tomato members. CONCLUSIONS: This work characterized tomato G-LecRKs and added members to the currently characterized Arabidopsis G-LecRKs. Additionally, protein sequence analysis showed an expansion of this family in tomato as compared to Arabidopsis, and the existence of conserved common motifs in the two plant species as well as conserved species-specific motifs.


Assuntos
Proteínas de Arabidopsis/classificação , Arabidopsis/enzimologia , Proteínas de Plantas/classificação , Proteínas Quinases/classificação , Receptores de Superfície Celular/classificação , Solanum lycopersicum/enzimologia , Motivos de Aminoácidos , Aquilegia/enzimologia , Aquilegia/genética , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico , Mapeamento Cromossômico , Solanum lycopersicum/genética , Família Multigênica , Oryza/enzimologia , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Terminologia como Assunto
7.
Plant J ; 80(4): 615-28, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182975

RESUMO

Megasporogenesis is essential for female fertility, and requires the accomplishment of meiosis and the formation of functional megaspores. The inaccessibility and low abundance of female meiocytes make it particularly difficult to elucidate the molecular basis underlying megasporogenesis. We used high-throughput tag-sequencing analysis to identify genes expressed in female meiocytes (FMs) by comparing gene expression profiles from wild-type ovules undergoing megasporogenesis with those from the spl mutant ovules, which lack megasporogenesis. A total of 862 genes were identified as FMs, with levels that are consistently reduced in spl ovules in two biological replicates. Fluorescence-assisted cell sorting followed by RNA-seq analysis of DMC1:GFP-labeled female meiocytes confirmed that 90% of the FMs are indeed detected in the female meiocyte protoplast profiling. We performed reverse genetic analysis of 120 candidate genes and identified four FM genes with a function in female meiosis progression in Arabidopsis. We further revealed that KLU, a putative cytochrome P450 monooxygenase, is involved in chromosome pairing during female meiosis, most likely by affecting the normal expression pattern of DMC1 in ovules during female meiosis. Our studies provide valuable information for functional genomic analyses of plant germline development as well as insights into meiosis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Meiose , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/genética , Recombinases Rec A/genética , Pareamento Cromossômico , Cromossomos de Plantas , Gametogênese Vegetal , Perfilação da Expressão Gênica , Mutação , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes
8.
bioRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38014306

RESUMO

Photoactivation of the plant photoreceptor and thermosensor phytochrome B (PHYB) triggers its condensation into subnuclear photobodies (PBs). However, the function of PBs remains frustratingly elusive. Here, we found that PHYB recruits PHYTOCHROME-INTERACTING FACTOR5 (PIF5) to PBs. Surprisingly, PHYB exerts opposing roles in degrading and stabilizing PIF5. Perturbing PB size by overproducing PHYB provoked a biphasic PIF5 response: while a moderate increase in PHYB enhanced PIF5 degradation, further elevating the PHYB level stabilized PIF5 by retaining more of it in enlarged PBs. These results reveal a PB-mediated light and temperature sensing mechanism, in which PHYB condensation confers the co-occurrence and competition of two antagonistic phase-separated PHYB signaling actions-PIF5 stabilization in PBs and PIF5 degradation in the surrounding nucleoplasm-thereby enabling an environmentally-sensitive counterbalancing mechanism to titrate nucleoplasmic PIF5 and its transcriptional output. This PB-enabled signaling mechanism provides a framework for regulating a plethora of PHYB-interacting signaling molecules in diverse plant environmental responses.

9.
Nat Commun ; 15(1): 3519, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664420

RESUMO

Photoactivation of the plant photoreceptor and thermosensor phytochrome B (PHYB) triggers its condensation into subnuclear membraneless organelles named photobodies (PBs). However, the function of PBs in PHYB signaling remains frustratingly elusive. Here, we found that PHYB recruits PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) to PBs. Surprisingly, PHYB exerts opposing roles in degrading and stabilizing PIF5. Perturbing PB size by overproducing PHYB provoked a biphasic PIF5 response: while a moderate increase in PHYB enhanced PIF5 degradation, further elevating the PHYB level stabilized PIF5 by retaining more of it in enlarged PBs. Conversely, reducing PB size by dim light, which enhanced PB dynamics and nucleoplasmic PHYB and PIF5, switched the balance towards PIF5 degradation. Together, these results reveal that PB formation spatially segregates two antagonistic PHYB signaling actions - PIF5 stabilization in PBs and PIF5 degradation in the surrounding nucleoplasm - which could enable an environmentally sensitive, counterbalancing mechanism to titrate nucleoplasmic PIF5 and environmental responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fitocromo B , Transdução de Sinais , Fitocromo B/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteólise/efeitos da radiação , Luz , Estabilidade Proteica , Regulação da Expressão Gênica de Plantas , Núcleo Celular/metabolismo , Plantas Geneticamente Modificadas
10.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37781622

RESUMO

The circadian clock is an endogenous oscillator, but its importance lies in its ability to impart rhythmicity on downstream biological processes or outputs. Focus has been placed on understanding the core transcription factors of the circadian clock and how they connect to outputs through regulated gene transcription. However, far less is known about posttranslational mechanisms that tether clocks to output processes through protein regulation. Here, we identify a protein degradation mechanism that tethers the clock to photomorphogenic growth. By performing a reverse genetic screen, we identify a clock-regulated F-box type E3 ubiquitin ligase, CLOCK-REGULATED F-BOX WITH A LONG HYPOCOTYL 1 ( CFH1 ), that controls hypocotyl length. We then show that CFH1 functions in parallel to red light signaling to target the transcription factor PIF3 for degradation. This work demonstrates that the circadian clock is tethered to photomorphogenesis through the ubiquitin proteasome system and that PIF3 protein stability acts as a hub to integrate information from multiple environmental signals.

11.
Nat Commun ; 12(1): 2042, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824329

RESUMO

Daytime warm temperature elicits thermomorphogenesis in Arabidopsis by stabilizing the central thermoregulator PHYTOCHROME INTERACTING transcription FACTOR 4 (PIF4), whose degradation is otherwise promoted by the photoreceptor and thermosensor phytochrome B. PIF4 stabilization in the light requires a transcriptional activator, HEMERA (HMR), and is abrogated when HMR's transactivation activity is impaired in hmr-22. Here, we report the identification of a hmr-22 suppressor mutant, rcb-101, which surprisingly carries an A275V mutation in REGULATOR OF CHLOROPLAST BIOGENESIS (RCB). rcb-101/hmr-22 restores thermoresponsive PIF4 accumulation and reverts the defects of hmr-22 in chloroplast biogenesis and photomorphogenesis. Strikingly, similar to hmr, the null rcb-10 mutant impedes PIF4 accumulation and thereby loses the warm-temperature response. rcb-101 rescues hmr-22 in an allele-specific manner. Consistently, RCB interacts directly with HMR. Together, these results unveil RCB as a novel temperature signaling component that functions collaboratively with HMR to initiate thermomorphogenesis by selectively stabilizing PIF4 in the daytime.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Morfogênese , Temperatura , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Genes Supressores , Luz , Modelos Biológicos , Morfogênese/efeitos da radiação , Fotoperíodo , Estabilidade Proteica/efeitos da radiação , Plântula/metabolismo , Plântula/efeitos da radiação , Tiorredoxinas/química , Tiorredoxinas/genética , Fatores de Transcrição/metabolismo
12.
Nat Commun ; 12(1): 5614, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556672

RESUMO

Photoactivated phytochrome B (PHYB) binds to antagonistically acting PHYTOCHROME-INTERACTING transcription FACTORs (PIFs) to regulate hundreds of light responsive genes in Arabidopsis by promoting PIF degradation. However, whether PHYB directly controls the transactivation activity of PIFs remains ambiguous. Here we show that the prototypic PIF, PIF3, possesses a p53-like transcription activation domain (AD) consisting of a hydrophobic activator motif flanked by acidic residues. A PIF3mAD mutant, in which the activator motif is replaced with alanines, fails to activate PIF3 target genes in Arabidopsis, validating the functions of the PIF3 AD in vivo. Intriguingly, the N-terminal photosensory module of PHYB binds immediately adjacent to the PIF3 AD to repress PIF3's transactivation activity, demonstrating a novel PHYB signaling mechanism through direct interference of the transactivation activity of PIF3. Our findings indicate that PHYB, likely also PHYA, controls the stability and activity of PIFs via structurally separable dual signaling mechanisms.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fitocromo B/genética , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Modelos Genéticos , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos da radiação , Homologia de Sequência de Aminoácidos , Ativação Transcricional/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo
13.
Org Lett ; 22(17): 6799-6804, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32845152

RESUMO

An efficient Cu(I)-catalyzed oxidative cyclization of alkynyl-tethered enynamides for the construction of fused bicyclic cyclopentadiene derivatives is disclosed. The cascade proceeds through alkyne oxidation, carbene/alkyne metathesis, and formal (3 + 2) cycloaddition. Employing aryl-tethered enynamides as starting materials, substituted 2-aminofurans can be exclusively formed.

14.
Mol Plant ; 12(12): 1561-1576, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31706032

RESUMO

Symbiotic microorganisms improve nutrient uptake by plants. To initiate mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, plants perceive Myc factors, including lipochitooligosaccharides (LCOs) and short-chain chitooligosaccharides (CO4/CO5), secreted by AM fungi. However, the molecular mechanism of Myc factor perception remains elusive. In this study, we identified a heteromer of LysM receptor-like kinases consisting of OsMYR1/OsLYK2 and OsCERK1 that mediates the perception of AM fungi in rice. CO4 directly binds to OsMYR1, promoting the dimerization and phosphorylation of this receptor complex. Compared with control plants, Osmyr1 and Oscerk1 mutant rice plants are less sensitive to Myc factors and show decreased AM colonization. We engineered transgenic rice by expressing chimeric receptors that respectively replaced the ectodomains of OsMYR1 and OsCERK1 with those from the homologous Nod factor receptors MtNFP and MtLYK3 of Medicago truncatula. Transgenic plants displayed increased calcium oscillations in response to Nod factors compared with control rice. Our study provides significant mechanistic insights into AM symbiotic signal perception in rice. Expression of chimeric Nod/Myc receptors achieves a potentially important step toward generating cereals that host nitrogen-fixing bacteria.


Assuntos
Fungos/fisiologia , Oryza/metabolismo , Oryza/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Multimerização Proteica , Transdução de Sinais , Simbiose , Oryza/citologia , Fosforilação , Estrutura Quaternária de Proteína
15.
PLoS One ; 13(3): e0193239, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29596449

RESUMO

The potato aphid, Macrosiphum euphorbiae, is an important agricultural pest that causes economic losses to potato and tomato production. To establish the transcriptome for this aphid, RNA-Seq libraries constructed from aphids maintained on tomato plants were used in Illumina sequencing generating 52.6 million 75-105 bp paired-end reads. The reads were assembled using Velvet/Oases software with SEED preprocessing resulting in 22,137 contigs with an N50 value of 2,003bp. After removal of contigs from tomato host origin, 20,254 contigs were annotated using BLASTx searches against the non-redundant protein database from the National Center for Biotechnology Information (NCBI) as well as IntereProScan. This identified matches for 74% of the potato aphid contigs. The highest ranking hits for over 12,700 contigs were against the related pea aphid, Acyrthosiphon pisum. Gene Ontology (GO) was used to classify the identified M. euphorbiae contigs into biological process, cellular component and molecular function. Among the contigs, sequences of microbial origin were identified. Sixty five contigs were from the aphid bacterial obligate endosymbiont Buchnera aphidicola origin and two contigs had amino acid similarities to viruses. The latter two were named Macrosiphum euphorbiae virus 2 (MeV-2) and Macrosiphum euphorbiae virus 3 (MeV-3). The highest sequence identity to MeV-2 had the Dysaphis plantaginea densovirus, while to MeV-3 is the Hubei sobemo-like virus 49. Characterization of MeV-2 and MeV-3 indicated that both are transmitted vertically from adult aphids to nymphs. MeV-2 peptides were detected in the aphid saliva and only MeV-2 and not MeV-3 nucleic acids were detected inside tomato leaves exposed to virus-infected aphids. However, MeV-2 nucleic acids did not persist in tomato leaf tissues, after clearing the plants from aphids, indicating that MeV-2 is likely an aphid virus.


Assuntos
Afídeos/genética , Afídeos/virologia , Perfilação da Expressão Gênica , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Análise de Sequência , Sequência de Aminoácidos , Animais , Ontologia Genética , Anotação de Sequência Molecular , Vírus de Plantas/fisiologia , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA