Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735111

RESUMO

During Drosophila metamorphosis, the ddaC dendritic arborisation sensory neurons selectively prune their larval dendrites in response to steroid hormone ecdysone signalling. The Nrf2-Keap1 pathway acts downstream of ecdysone signalling to promote proteasomal degradation and thereby dendrite pruning. However, how the Nrf2-Keap1 pathway is activated remains largely unclear. Here, we demonstrate that the metabolic regulator AMP-activated protein kinase (AMPK) plays a cell-autonomous role in dendrite pruning. Importantly, AMPK is required for Mical and Headcase expression and for activation of the Nrf2-Keap1 pathway. We reveal that AMPK promotes the Nrf2-Keap1 pathway and dendrite pruning partly via inhibition of the insulin pathway. Moreover, the AMPK-insulin pathway is required for ecdysone signalling to activate the Nrf2-Keap1 pathway during dendrite pruning. Overall, this study reveals an important mechanism whereby ecdysone signalling activates the Nrf2-Keap1 pathway via the AMPK-insulin pathway to promote dendrite pruning, and further suggests that during the nonfeeding prepupal stage metabolic alterations lead to activation of the Nrf2-Keap1 pathway and dendrite pruning.


Assuntos
Proteínas de Drosophila , Insulinas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dendritos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Insulinas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Plasticidade Neuronal
2.
FASEB J ; 38(13): e23727, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877845

RESUMO

Oxidative stress is proposed as a regulatory element in various neurological disorders, which is involved in the progress of several neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Antioxidant drugs are widely used to alleviate neurodegenerative disorders. Astragalus membranaceus (Huangqi, AM) is a commonly used medicinal herb with a wide range of pharmacological effects. Here, the protective effect and mechanism of AM extract (AME) and its bioactive compounds against neurodegenerative disorders via alleviating oxidative stress were detected using adult Drosophila melanogaster. The drug safety was measured by development analysis; oxidative stress resistance ability was detected by survival rate under H2O2 environment; ROS level was detected by DHE staining and gstD1-GFP fluoresence assay; antioxidative abilitiy was represent by measuring antioxidant enzyme activity, antioxidative-related gene expression, and ATP and MFN2 levels. The neuroprotective effect was evaluated by lifespan and locomotion analysis in Aß42 transgenic and Pink1B9 mutants. AME dramatically increased the survival rates, improved the CAT activity, restored the decreased mRNA expressions of Sod1, Cat, and CncC under H2O2 stimulation, and ameliorated the neurobehavioral defects of the AD and PD. Thirteen small molecules in AM had antioxidant function, in which vanillic acid and daidzein had the most potent antioxidant effect. Vanillic acid and daidzein could increase the activities of SOD and CAT, GSH level, and the expressions of antioxidant genes. Vanillic acid could improve the levels of ATP and MFN2, and mRNA expressions of ND42 and SDHC to rescue mitochondrial dysfunction. Furthermore, vanillic acid ameliorated neurobehavioral defects of PD. Daidzein ameliorated neurobehavioral defect of Aß-induced AD mode. Taken together, AM plays a protective role in oxidative damage, thereby as a potential natural drug to treat neurodegenerative disorders.


Assuntos
Antioxidantes , Astragalus propinquus , Drosophila melanogaster , Doenças Neurodegenerativas , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Astragalus propinquus/química , Drosophila melanogaster/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Extratos Vegetais/farmacologia , Animais Geneticamente Modificados , Medicamentos de Ervas Chinesas/farmacologia , Peróxido de Hidrogênio , Peptídeos beta-Amiloides/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5707-5718, 2023 Nov.
Artigo em Zh | MEDLINE | ID: mdl-38114167

RESUMO

Sleep occupies one-third of a person's lifetime and is a necessary condition for maintaining physiological function and health. With the increase in social and economic pressures, the growing use of electronic devices and the accelerated aging process of the population, insufficient sleep and its hazards have drawn widespread attention from researchers in China and abroad. Sleep deprivation refers to a decrease in sleep or a severe lack of sleep due to various reasons. Previous studies have found that sleep deprivation can cause extensive damage to the body, including an increased incidence and mortality rate of neuropathic diseases in the brain, cardiovascular diseases, imbalances in the gut microbiota, and other multi-organ diseases. The mechanisms underlying the occurrence of multi-system and multi-organ diseases due to sleep deprivation mainly involve oxidative stress, inflammatory responses, and impaired immune function in the body. According to traditional Chinese medicine(TCM), sleep deprivation falls into the category of sleepiness, and long-term sleepiness leads to Yin-Yang imbalance, resulting in the consumption of Qi and damage to the five Zang-organs. The appropriate treatment should focus on tonifying deficiency, reinforcing healthy Qi, and harmonizing Yin and Yang. TCM is characterized by a wide variety and abundant resources, and it has minimal side effects and a broad range of applications. Numerous studies have shown that TCM drugs and prescriptions not only improve sleep but also have beneficial effects on liver nourishment, intelligence enhancement, and kidney tonification, effectively preventing and treating the body injury caused by sleep deprivation. Given the increasing prevalence of sleep deprivation and its significant impact on body health, this article reviewed sleep deprivation-mediated body injury and its mechanism, summarized and categorized TCM compound prescriptions and single drugs for preventing and treating body injury, with the aim of laying the foundation for researchers to develop effective drugs for preventing and treating body injury caused by sleep deprivation and providing references for further exploration of the molecular mechanisms underlying the body injury caused by sleep deprivation.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Sonolência , Yin-Yang , China , Medicamentos de Ervas Chinesas/uso terapêutico
4.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1754-1764, 2022 Apr.
Artigo em Zh | MEDLINE | ID: mdl-35534246

RESUMO

Astragali Radix, a medicinal herb for invigorating Qi, has anti-aging, anti-tumor, immunoregulatory, blood sugar-and lipid-lowering, anti-fibrosis, anti-radiation and other pharmacological effects. This article reviewed the studies about the chemical components and pharmacological effects of Astragali Radix. According to the theory of quality markers(Q-markers) of Chinese medicinal materials, we predicted the Q-markers of Astragali Radix from traditional efficacy, chemical component validity, measurability, plant phylogeny, and pharmacokinetis. The results showed that total polysaccharides, flavonoids(e.g., calycosin-7-O-ß-D-glucoside, formononetin, calycosin, quercetin, and ononin), and saponins(e.g., astragalosides Ⅱ, Ⅲ, and Ⅳ) can be taken as the main Q-markers. This review lays a foundation for regulating the quality research and standard establishment of Astragali Radix, and benefits the control and quality supervision of the production process of Astragali Radix and its related products.


Assuntos
Astrágalo , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides , Raízes de Plantas
5.
Artigo em Inglês | MEDLINE | ID: mdl-27793615

RESUMO

Seasonal acclimatization is important for animals to live optimally in the varying environment. Phrynocephalus vlangalii, a species of lizard endemic in China, distributes on Qinghai-Tibet Plateau ranging from 2000 to 4600m above sea level. To dissect how this lizard mediate metabolism to adapt various season, the preferred body temperature (Tb), standard metabolic rate (SMR), mitochondrial respiration rates and activities of four metabolic enzymes in this species were tested in different seasons (spring, summer, and autumn). The results showed that the preferred Tb was the lowest in spring and the highest in summer. SMR, maximal mitochondrial respiration rates in liver and skeletal muscle were the highest in spring. Similarly, higher activities of lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities of liver and skeletal muscle were observed in spring. However, ß-hydroxyacyl coenzyme A dehydrogenase (HOAD) activities of liver and skeletal muscle were higher in autumn. On the whole, seasonal variation of metabolism is the highest in spring and the lowest in summer. Seasonal variation of metabolism is the opposite of preferred body temperature, this may be one of the mechanisms to adapt to the environment in P. vlangalii. Our results suggested that P. vlangalii at high altitude has certain adaptive characteristics on metabolism in different seasons.


Assuntos
Aclimatação , Regulação da Temperatura Corporal , Metabolismo Energético , Fígado/metabolismo , Lagartos/fisiologia , Músculo Esquelético/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Altitude , Animais , Comportamento Animal , China , Citrato (si)-Sintase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hibernação , L-Lactato Desidrogenase/metabolismo , Fígado/enzimologia , Masculino , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/enzimologia , Estações do Ano
6.
Artigo em Inglês | MEDLINE | ID: mdl-26310105

RESUMO

Oxidative stress is a major challenge for the survival of animals living on plateaus; however, lifelong exposure to high altitudes could generate certain adaptabilities which make them more tolerant to these environments. The aim of the present study was to compare the oxidative stress and antioxidant status between low altitude (LA, 2900m) and high altitude (HA, 4200m) populations of Phrynocephalus vlangalii. The results showed that malondialdehyde levels in the HA populations decreased significantly in the brain, but markedly increased in the muscle and had no significant difference in the liver compared to LA populations. The activity of catalase in the brain was much higher in HA than LA. Except for total antioxidant capacity and glutathione reductase, other antioxidants were similar between the two populations in livers. By contrast, the levels of most antioxidants in muscle decreased markedly with elevation. We also explored the effects of hypoxia on oxidative damage and antioxidant defenses in P. vlangalii. The lizards were acclimated in a simulated hypoxic chamber (15% O2 and 8% O2) for 6weeks. The results showed that in the 8% O2 group, the levels of malondialdehyde, catalase, glutathione and total antioxidant capacity in the brain, and malondialdehyde, catalase and superoxide dismutase in the liver were significantly higher than the 15% O2 group. These findings indicate that in this species the oxidative stress and antioxidant capacity are subject to altitude and hypoxia and this lizard may have acquired some ability to deal with the oxidative stress.


Assuntos
Aclimatação , Encéfalo/metabolismo , Hipóxia/veterinária , Iguanas/fisiologia , Fígado/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Altitude , Animais , Biomarcadores/metabolismo , Encéfalo/enzimologia , Encéfalo/fisiopatologia , Catalase/metabolismo , China , Glutationa/metabolismo , Membro Posterior , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/fisiopatologia , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Distribuição Aleatória , Proteínas de Répteis/metabolismo , Superóxido Dismutase/metabolismo
7.
Immunobiology ; 229(3): 152809, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38788361

RESUMO

OBJECTIVE: This study investigated the effect of oxidative stress and the TLR4/NF-κB/NLRP3 pathway on the pathogenesis of acute lung injury (ALI) induced by high-altitude hypoxia. METHODS: Rats were placed in an animal hyperbaric oxygen chamber to establish a rat model of ALI induced by high-altitude hypoxia after treatment with N-acetylcysteine (NAC; a reactive oxygen species [ROS] inhibitor) or/and MCC950 (an NLPR3 inflammasome inhibitor). After modeling, the wet-to-dry weight ratio (W/D) of rat lung tissues was calculated. In lung tissues, ROS levels were detected with immunofluorescence, the enzyme activity was tested with the kit, and the expression of TLR4/NF-κB/NLRP3 pathway-related genes and proteins was measured with western blotting and qRT-PCR. The levels of inflammatory factors in the serum were quantified with ELISA. RESULTS: After modeling, rats showed significantly increased W/D, ROS levels, and Malondialdehyde (MDA) concentrations and markedly diminished Superoxide dismutase (SOD) and Glutathione (GSH) concentrations in lung tissues (all P < 0.01), accompanied by substantially enhanced serum levels of TNF-α, IL-6, and IL-1ß, significantly reduced serum levels of IL-10, and remarkably augmented TLR4, NLRP3, p-NF-κB p65, NF-κB p65 mRNA, and Caspase-1 expression in lung tissues (all P < 0.01). Furthermore, treatment with NAC or MCC950 alone or in combination prominently lowered the W/D of lung tissues (P < 0.01), serum levels of TNF-α (P < 0.05), IL-6 (P < 0.05), and IL-1ß (P < 0.01), and NF-κB p65 expression and phosphorylation (P < 0.05, P < 0.01) while significantly increasing SOD and GSH concentrations (P < 0.05, P < 0.01) and serum levels of IL-10 (P < 0.01) in modeled rats. Meanwhile, treatment of NAC alone or combined with MCC950 significantly reduced MDA concentration and ROS levels (P < 0.05, P < 0.01) in modeled rats, and treatment of MCC950 alone or combined with NAC considerably declined TLR4, NLRP3, and Caspase-1 expression in modeled rats (P < 0.05, P < 0.01). CONCLUSION: Inhibition of oxidative stress and the TLR4/NF-κB/NLRP3 pathway can ameliorate ALI in rats exposed to high-altitude hypoxia.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Ratos , NF-kappa B/metabolismo , Masculino , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo , Hipóxia/metabolismo , Inflamassomos/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Altitude , Sulfonamidas/farmacologia
8.
J Ethnopharmacol ; 322: 117578, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38104873

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: San Huang Pill (SHP) is a prescription in Dunhuang Ancient Medical Prescription, which has the efficacy of heat-clearing and dampness-drying, and is a traditional formula for the treatment of gastrointestinal diseases. However, its efficacy and mechanism in treating ulcerative colitis (UC) are still unclear. AIM OF THE STUDY: To investigate the protective effects of SHP and its bioactive compounds against Dextran Sulfate Sodium (DSS)-induced intestinal damage using the Drosophila melanogaster model, and to detect the molecular mechanism of SHP in the treatment of UC. METHODS: Survival rate, locomotion, feeding, and excretion were used to explore the anti-inflammatory effects of SHP. The pharmacotoxicity of SHP was measured using developmental analysis. Intestinal integrity, intestinal length, intestinal acid-base homeostasis, and Tepan blue assay were used to analyze the protective effect of SHP against DSS-induced intestinal damage. The molecular mechanism of SHP was detected using DHE staining, immunofluorescence, real-time PCR, 16 S rRNA gene sequencing, and network pharmacology analysis. Survival rate, intestinal length, and integrity analysis were used to detect the protective effect of bioactive compounds of SHP against intestinal damage. RESULTS: SHP supplementation significantly increased the survival rate, restored locomotion, increased metabolic rate, maintained intestinal morphological integrity and intestinal homeostasis, protected intestinal epithelial cells, and alleviated intestinal oxidative damage in adult flies under DSS stimulation. Besides, administration of SHP had no toxic effect on flies. Moreover, SHP supplementation remarkably decreased the expression levels of genes related to JAK/STAT, apoptosis, and Toll signaling pathways, increased the gene expressions of the Nrf2/Keap1 pathway, and also reduced the relative abundance of harmful bacteria in DSS-treated flies. Additionally, the ingredients in SHP (palmatine, berberine, baicalein, wogonin, rhein, and aloeemodin) had protection against DSS-induced intestinal injury, such as prolonging survival rate, increasing intestinal length, and maintaining intestinal barrier integrity. CONCLUSION: SHP had a strong anti-inflammatory function, and remarkably alleviated DSS-induced intestinal morphological damage and intestinal homeostatic imbalance in adult flies by regulating JAK/STAT, apoptosis, Toll and Nrf2/Keap1 signaling pathways, and also gut microbial homeostasis. This suggests that SHP may be a potential complementary and alternative medicine herb therapy for UC, which provides a basis for modern pharmacodynamic evaluation of other prescriptions in Dunhuang ancient medical prescription.


Assuntos
Colite Ulcerativa , Colite , Proteínas de Drosophila , Animais , Camundongos , Drosophila , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , Drosophila melanogaster , Proteína 1 Associada a ECH Semelhante a Kelch , Apoptose , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Colo , Camundongos Endogâmicos C57BL , Proteínas de Drosophila/genética
9.
J Ethnopharmacol ; 324: 117765, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38228230

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqi Baihe Granules (HQBHG) are a modified formulation based on the traditional recipe "Huangqi Baihe porridge" and the Dunhuang medical prescription "Cistanche Cistanche Soup." The Herbal medicine moistens the lungs and tones the kidneys in addition to replenishing Qi and feeding Yin, making it an ideal choice for enhancing adaptability to high-altitude hypoxic environments. AIM OF THE STUDY: The purpose of this study was to examine a potential molecular mechanism for the treatment and prevention of hypoxic acute lung injury (ALI) in rats using Huangqi Baihe Granules. MATERIALS AND METHODS: The HCP-III laboratory animal low-pressure simulation chamber was utilized to simulate high-altitude environmental exposure and establish an ALI model in rats. The severity of lung damage was evaluated using a battery of tests that included spirometry, a wet/dry lung ratio, H&E staining, and transmission electron microscopy. Using immunofluorescence, the amount of reactive oxygen species (ROS) in lung tissue was determined. Superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and myeloperoxidase (MPO) levels in lung tissue were determined using this kit. Serum levels of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 beta), and antiinflammatory cytokines like interleukin-10 (IL-10) were measured using an enzyme-linked immunosorbent assay kit. Gene expression changes in lung tissue were identified using transcriptomics, and the relative expression of proteins and mRNA involved in the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB p65)/Nod-like receptor protein 3 (NLRP3) pathway were determined using western blotting and quantitative real-time PCR. RESULTS: HQBHG was shown to enhance lung function considerably, decrease the wet/dry ratio of the lungs, attenuate lung tissue damage, suppress ROS and MDA formation, and increase SOD activity and GSH expression. The research also demonstrated that HQBHG inhibited the activation of the TLR4/NF-κB p65/NLPR3 signaling pathway in lung tissue, reducing the release of downstream pro-inflammatory cytokines. CONCLUSIONS: HQBHG exhibits potential therapeutic effects against ALI induced by altitude hypoxia through suppressing oxidative stress and inflammatory response. This suggests it may be a novel drug for treating and preventing ALI.


Assuntos
Lesão Pulmonar Aguda , Astragalus propinquus , Medicamentos de Ervas Chinesas , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Estresse Oxidativo , Lesão Pulmonar Aguda/induzido quimicamente , Citocinas/metabolismo , Glutationa/metabolismo , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Superóxido Dismutase/metabolismo , Lipopolissacarídeos/farmacologia
10.
ACS Appl Mater Interfaces ; 16(14): 17838-17845, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556984

RESUMO

Changeable substituent groups of organic molecules can provide an opportunity to clarify the antibacterial mechanism of organic molecules by tuning the electron cloud density of their skeleton. However, understanding the antibacterial mechanism of organic molecules is challenging. Herein, we reported a molecular view strategy for clarifying the antibacterial switch mechanism by tuning electron cloud density of cinnamaldehyde molecule skeleton. The cinnamaldehyde and its derivatives were self-assembled into nanosheets with excellent water solubility, respectively. The experimental results show that α-bromocinnamaldehyde (BCA) nanosheets exhibits unprecedented antibacterial activity, but there is no antibacterial activity for α-methylcinnamaldehyde nanosheets. Therefore, the BCA nanosheets and α-methylcinnamaldehyde nanosheets achieve an antibacterial switch. Theoretical calculations further confirmed that the electron-withdrawing substituent of the bromine atom leads to a lower electron cloud density of the aldehyde group than that of the electron-donor substituent of the methyl group at the α-position of the cinnamaldehyde skeleton, which is a key point in elucidating the antimicrobial switch mechanism. The excellent biocompatibility of BCA nanosheets was confirmed by CCK-8. The mouse wound infection model, H&E staining, and the crawling ability of drosophila larvae show that as-prepared BCA nanosheets are safe and promising for wound healing. This study provides a new strategy for the synthesis of low-cost organic nanomaterials with good biocompatibility. It is expected to expand the application of natural organic small molecule materials in antimicrobial agents.


Assuntos
Acroleína/análogos & derivados , Nanoestruturas , Camundongos , Animais , Antibacterianos/farmacologia , Acroleína/farmacologia , Esqueleto
11.
Artigo em Inglês | MEDLINE | ID: mdl-23500623

RESUMO

The effects of hypoxia on behavioral thermoregulation, rate of heating and cooling, hysteresis of heart rate, and standard metabolic rate (SMR) were investigated in Phrynocephalus przewalskii, a small size toad headed lizard. Preferred temperature (T(b)) descended when lizards were exposed to severe hypoxia (8% O(2) and 6% O(2)) for 22 h, and lizards were able to maintain preferred T(b) after one week at 12% and 8% O(2) respectively. The period of heating increased after being treated with hypoxia (12% and 8% O(2)) for one week. Hysteresis of heart rate appeared at any given body temperature and oxygen level except at 39 °C and 40 °C at 8% O(2). SMR significantly increased after one-week acclimatization to 12% and 8% O(2) when ambient temperature (T(a)) was 25 °C, however, it did not change at 35 °C. Thus, we suggest that P. przewalskii has special thermoregulatory and metabolic mechanisms to acclimatize to the hypoxic environment.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Metabolismo Energético/fisiologia , Hipóxia/fisiopatologia , Lagartos/fisiologia , Animais , Temperatura Corporal/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Masculino , Análise Multivariada , Ovoviviparidade , Temperatura , Fatores de Tempo
12.
Biomed Pharmacother ; 164: 114950, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37263167

RESUMO

Inflammatory bowel disease (IBD) is a special chronic intestinal inflammatory disease, which is mainly divided into Crohn's disease (CD) and ulcerative colitis (UC). Its occurrence is a complex process that regulated by multiple signaling pathways, including nuclear factor erythroid 2-related factor (Nrf2)/ antioxidant response element (ARE) signaling pathway. Nrf2/ARE pathway as the central defense mechanism against oxidative stress controls the expression of many antioxidant and anti-inflammatory genes in the nucleus, and plays a crucial role in the treatment of IBD. Various studies have proved that many natural compounds target Nrf2/ARE signaling pathway to treat IBD. Here, we introduced the regulatory mechanism of the Nrf2/ARE pathway, and its role in IBD and IBD complications (intestinal fibrosis and colorectal cancer (CRC)); summarized the research progress of Nrf2 targeted natural compounds and extracts in the treatment of IBD; and finally described the intestinal microbiota that alleviate or treat IBD via activating Nrf2/ARE signaling pathway. This review highlights the potential for targeting Nrf2/ARE pathway to treat IBD.


Assuntos
Produtos Biológicos , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Elementos de Resposta Antioxidante , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Transdução de Sinais/fisiologia
13.
Int J Biol Macromol ; 241: 124639, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121419

RESUMO

Angelica sinensis polysaccharide (ASP) is one of the principal active components of Angelica sinensis (AS) that is widely used in natural medicine and has various pharmacological activities, including antioxidant, anti-inflammatory, and enhancing immunity. However, its pharmacological role of anti-aging needs to be clarified. Here, we detected the beneficial effect and mechanism of ASP on healthy aging and aging-related diseases using the Drosophila melanogaster model. The results showed that oral administration of ASP remarkably extended lifespan, increased reproduction, improved climbing ability, and increased resistance to starvation and oxidative stress in aged flies, mainly via inhibiting insulin signaling (IIS) and TOR signaling and boosting antioxidant ability. Further, ASP supplementation protected against aging-induced intestinal homeostasis imbalance via inhibiting intestinal stem cells (ISCs) hyperproliferation and oxidative damage, improved sleep disorders via rescuing sleep rhythm in aged flies, and had a neuroprotective effect on Aß42 transgenic flies. Taken together, our findings shed light on the possibility that ASP could increase lifespan, improve healthy aging, and ultimately reduce the incidence of age-related illnesses. It holds promise as a candidate for anti-aging intervention and treatment for aging-associated disorders.


Assuntos
Angelica sinensis , Antioxidantes , Animais , Antioxidantes/farmacologia , Insulina/farmacologia , Longevidade , Drosophila , Drosophila melanogaster , Polissacarídeos/uso terapêutico , Transdução de Sinais
14.
Int J Biol Macromol ; 234: 123632, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801290

RESUMO

Astragalus polysaccharide (APS) is a notable bioactive component of Astragalus membranaceus and has been extensively investigated for its pharmacological activities, including antioxidant, neuroprotection, and anticancer effects. However, the beneficial effects and mechanisms of APS on anti-aging diseases remain largely unknown. Here, we utilized the classic model organism Drosophila melanogaster to investigate the beneficial effects and mechanism of APS on aging-related intestinal homeostasis imbalance, sleeping disorders, and neurodegenerative diseases. The results showed that administration of APS significantly attenuated age-associated disruption of the intestinal barrier, loss of gastrointestinal acid-base balance, reduction in intestinal length, overproliferation of the intestinal stem cells (ISCs), and sleeping disorders upon aging. Furthermore, APS supplementation delayed the onset of Alzheimer's phenotypes in Aß42-induced Alzheimer's disease (AD) flies, including the extension of lifespan and the increase in motility, but without rescuing neurobehavioral deficits in the AD model of taupathy and Parkinson's disease (PD) model of Pink1 mutation. In addition, transcriptomics was used to dissect updated mechanisms of APS on anti-aging, such as JAK-STAT signaling, Toll signaling, and IMD signaling pathways. Taken together, these studies indicate that APS plays a beneficial role in modulating aging-related diseases, thereby as a potential natural drug to delay aging.


Assuntos
Doença de Alzheimer , Astrágalo , Proteínas de Drosophila , Animais , Drosophila melanogaster , Astragalus propinquus , Longevidade , Polissacarídeos/farmacologia , Proteínas Serina-Treonina Quinases , Proteínas de Drosophila/genética
15.
Biomed Pharmacother ; 159: 114265, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652735

RESUMO

Cytarabine (Ara-C) is a widely used drug in acute myeloid leukemia (AML). However, it faces serious challenges in clinical application due to serious side effects such as gastrointestinal disorders and neurologic toxicities. Until now, the mechanism of Ara-C-induced damage is not clear. Here, we used Drosophila melanogaster (fruit fly) as the in vivo model to explore the side effects and mechanism of Ara-C. Our results showed that Ara-C supplementation delayed larval development, reduced lifespan, impaired locomotor capacity, and increased susceptibility to stress response in adult flies. In addition, Ara-C led to the intestinal morphological damage and ROS accumulation in the guts. Moreover, administration of Ara-C promoted gene expressions of Toll pathway, IMD pathway, and apoptotic pathway in the guts. These findings raise the prospects of using Drosophila as in vivo model to rapidly assess chemotherapy-mediated toxicity and efficiently screen the protective drugs.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Leucemia Mieloide Aguda , Animais , Citarabina/toxicidade , Drosophila/metabolismo , Drosophila melanogaster , Apoptose , Leucemia Mieloide Aguda/tratamento farmacológico
16.
Int J Biol Macromol ; 241: 124609, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105250

RESUMO

Hedysarum polybotrys polysaccharide (HPS) is one of the main active ingredients of Hedysarum with many health-beneficial properties, including antioxidant property, immunomodulatory, anti-inflammatory, and anti-tumor. However, the effect of HPS on anti-aging is still unclear. This study was to explore the protective function of HPS on aging and age-related diseases using Drosophila melanogaster. The results demonstrated that HPS supplementation promoted hatchability and prolonged lifespan by enhancing the antioxidative capacity. Administraction of HPS ameliorated age-related symptoms such as imbalanced intestinal homeostasis, sleep disturbances, and beta-amyloid (Aß) induced Alzheimer's disease (AD) in flies, but did not modulate neurobehavioral deficits in the AD model of tauopathy and the Parkinson's disease (PD) model of Pink1 mutation. Overall, this study reveals that HPS has strong potential in the prevention of aging and age-related diseases, and provided a new candidate for the development of anti-aging drugs.


Assuntos
Doença de Alzheimer , Fabaceae , Animais , Drosophila melanogaster , Antioxidantes/farmacologia , Longevidade , Envelhecimento , Polissacarídeos/farmacologia
17.
Biomed Pharmacother ; 169: 115906, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984304

RESUMO

Chemotherapy leads to significant side effects in patients, especially in the gut, resulting in various clinical manifestations and enhanced economic pressure. Until now, many of the underlying mechanisms remain poorly understood. Here, we used Drosophila melanogaster (fruit fly) as in vivo model to delineate the side effects and underlying mechanisms of Irinotecan (CPT-11). The results showed that administration of CPT-11 delayed larval development, induced imbalance of male to female ratio in offspring, shortened lifespan, impaired locomotor ability, changed metabolic capacity, induced ovarian atrophy, and increased excretion. Further, CPT-11 supplementation dramatically caused intestinal damages, including decreased intestinal length, increased crop size, disrupted gastrointestinal acid-based homeostasis, induced epithelial cell death, and damaged the ultrastructure and mitochondria structure of epithelial cells. The cross-comparative analysis between transcriptome and bioinformation results showed that CPT-11 induced intestinal damage mainly via regulating the Toll-like receptor signaling, NF-kappa B signaling, MAPK signaling, FoxO signaling, and PI3K-AKT signaling pathways. In addition, CPT-11 led to the intestinal damage by increasing ROS accumulation. These observations raise the prospects of using Drosophila as a model for the rapid and systemic evaluation of chemotherapy-induced side effects and high-throughput screening of the protective drugs.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Humanos , Masculino , Adulto , Feminino , Irinotecano , Fosfatidilinositol 3-Quinases , Estresse Oxidativo , Imunidade Inata
18.
Front Immunol ; 14: 1133899, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865554

RESUMO

Radiotherapy is the major treatment of non-small cell lung cancer (NSCLC). The radioresistance and toxicity are the main obstacles that leading to therapeutic failure and poor prognosis. Oncogenic mutation, cancer stem cells (CSCs), tumor hypoxia, DNA damage repair, epithelial-mesenchymal transition (EMT), and tumor microenvironment (TME) may dominate the occurrence of radioresistance at different stages of radiotherapy. Chemotherapy drugs, targeted drugs, and immune checkpoint inhibitors are combined with radiotherapy to treat NSCLC to improve the efficacy. This article reviews the potential mechanism of radioresistance in NSCLC, and discusses the current drug research to overcome radioresistance and the advantages of Traditional Chinese medicine (TCM) in improving the efficacy and reducing the toxicity of radiotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Reparo do DNA , Sistemas de Liberação de Medicamentos , Transição Epitelial-Mesenquimal , Microambiente Tumoral
19.
Biomed Pharmacother ; 164: 114902, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37209628

RESUMO

BACKGROUND: Intestinal mucositis (IM) is characterized by damage to the intestinal mucosa resulting from inhibition of epithelial cell division and loss of renewal capacity following anticancer chemotherapy and radiotherapy. Cytarabine (Ara-C), the main chemotherapy drug for the treatment of leukemia and lymphoma, is a frequent cause of IM. Guiqi Baizhu prescription (GQBZP) is a traditional Chinese medicine with anti-cancer and anti-inflammatory effects. PURPOSE: To determine if GQBZP can ameliorate Ara-C induced IM and identify and characterize the pharmacologic and pharmacodynamic mechanisms. STUDY DESIGN AND METHODS: IM was induced in mice with Ara-C and concurrently treated with orally administered GQBZP. Body weight and food intake was monitored, with HE staining to calculate ileal histomorphometric scoring and villus length/crypt depth. Immunoblotting was used to detect intestinal tissue inflammatory factors. M1 macrophages (M1) were labeled with CD86 by flow cytometry and iNOS + F4/80 by immunofluorescence. Virtual screening was used to find potentially active compounds in GQBZP that targeted JAK2. In vitro, RAW264.7 cells were skewed to M1 macrophage polarization by lipopolysaccharide (LPS) and interferon-γ (INF-γ) and treated orally with GQBZP or potential active compounds. M1 was labeled with CD86 by flow cytometry and iNOS by immunofluorescence. ELISA was used to detect inflammatory factor expression. Active compounds against JAK2, p-JAK2, STAT1 and p-STAT1 were identified by western blotting and HCS fluorescence. Molecular dynamics simulations and pharmacokinetic predictions were carried out on representative active compounds. RESULTS: Experimental results with mice in vivo suggest that GQBZP significantly attenuated Ara-C-induced ileal damage and release of pro-inflammatory factors by inhibiting macrophage polarization to M1. Molecular docking was used to identify potentially active compounds in GQBZP that targeted JAK2, a key factor in macrophage polarization to M1. By examining the main components of each herb and applying Lipinski's rules, ten potentially active compounds were identified. In vitro experimental results suggested that all 10 compounds of GQBZP targeted JAK2 and could inhibit M1 polarization in RAW264.7 cells treated with LPS and INF-γ. Among them, acridine and senkyunolide A down-regulated the expression of JAK2 and STAT1. MD simulations revealed that acridine and senkyunolide A were stable in the active site of JAK2 and exhibited good interactions with the surrounding amino acids. CONCLUSIONS: GQBZP can ameliorate Ara-C-induced IM by reducing macrophage polarization to M1, and acridine and senkyunolide A are representative active compounds in GQBZP that target JAK2 to inhibit M1 polarization. Targeting JAK2 to regulate M1 polarization may be a valuable therapeutic strategy for IM.


Assuntos
Mucosite , Camundongos , Animais , Mucosite/patologia , Citarabina/farmacologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Simulação de Acoplamento Molecular , Macrófagos/metabolismo , Interferon gama/metabolismo
20.
Front Behav Neurosci ; 16: 788633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431829

RESUMO

Both sensory and metabolic processes guide food intake. Olfactory inputs help coordinate food appreciation and selection, but their role in food consumption and post-feeding physiology remains poorly understood. In this study, using Drosophila melanogaster as a model system, we investigated the effects of olfactory sensory neurons (OSNs) on food consumption, metabolism, and stress responses. We found that dysfunction of OSNs affects diverse processes, including decreased food consumption, increased triacylglycerol level, enhanced stress resistance to starvation or desiccation, and decreased cold resistance. Decreased neuropeptide F receptor (NPFR) level or increased insulin activity in OSNs inhibited food consumption, while impaired NPF signaling or insulin signaling in OSNs increased resistance to starvation and desiccation. These studies provide insights into the function of the olfactory system in control of feeding behaviors and physiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA