Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(13): 2305-2325, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36813575

RESUMO

Cholecystokinin (CCK) enables excitatory circuit long-term potentiation (LTP). Here, we investigated its involvement in the enhancement of inhibitory synapses. Activation of GABA neurons suppressed neuronal responses in the neocortex to a forthcoming auditory stimulus in mice of both sexes. High-frequency laser stimulation (HFLS) of GABAergic neurons potentiated this suppression. HFLS of CCK interneurons could induce the LTP of their inhibition toward pyramidal neurons. This potentiation was abolished in CCK knock-out mice but intact in mice with both CCK1R and 2R knockout of both sexes. Next, we combined bioinformatics analysis, multiple unbiased cell-based assays, and histology examinations to identify a novel CCK receptor, GPR173. We propose GPR173 as CCK3R, which mediates the relationship between cortical CCK interneuron signaling and inhibitory LTP in the mice of either sex. Thus, GPR173 might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.SIGNIFICANCE STATEMENT CCK, the most abundant and widely distributed neuropeptide in the CNS, colocalizes with many neurotransmitters and modulators. GABA is one of the important inhibitory neurotransmitters, and much evidence shows that CCK may be involved in modulating GABA signaling in many brain areas. However, the role of CCK-GABA neurons in the cortical microcircuits is still unclear. We identified a novel CCK receptor, GPR173, localized in the CCK-GABA synapses and mediated the enhancement of the GABA inhibition effect, which might represent a promising therapeutic target for brain disorders related to excitation and inhibition imbalance in the cortex.


Assuntos
GABAérgicos , Receptores da Colecistocinina , Masculino , Feminino , Camundongos , Animais , GABAérgicos/farmacologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Neurônios GABAérgicos/fisiologia , Camundongos Knockout , Interneurônios , Colecistocinina , Ácido gama-Aminobutírico/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Acoplados a Proteínas G/genética
2.
J Neurochem ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750623

RESUMO

Cholecystokinin (CCK) has been confirmed to be essential in NMDA-dependent long-term potentiation (LTP) at mouse cortical synapses. This paper has proven that CCK is necessary for LTP induced by high-frequency stimulation of mouse hippocampal synapses projected from the entorhinal cortex. We show that the subunit of the axonal NMDA receptor dominant modulates the activity-induced LTP by triggering pre-synaptic CCK release. A functional pre-synaptic NMDA receptor is required to induce LTP mediated by the axonal Ca2+ elevation and CCK exocytosis at CCK-specific neurons. Genetic depletion of the GluN1 subunit of NMDA receptors on CCK neurons, which projected from the entorhinal cortex largely abolished the axonal Ca2+ elevation and disturbed the secretion of CCK in hippocampus. These results demonstrate that activity-induced LTP at the hippocampal synapse is CCK-dependent, and CCK secretion from the axonal terminal is modulated by pre-synaptic NMDA receptors.

3.
Mol Psychiatry ; 28(8): 3459-3474, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37365241

RESUMO

Depression is a common and severe mental disorder. Evidence suggested a substantial causal relationship between stressful life events and the onset of episodes of major depression. However, the stress-induced pathogenesis of depression and the related neural circuitry is poorly understood. Here, we investigated how cholecystokinin (CCK) and CCKBR in the basolateral amygdala (BLA) are implicated in stress-mediated depressive-like behavior. The BLA mediates emotional memories, and long-term potentiation (LTP) is widely considered a trace of memory. We identified that the cholecystokinin knockout (CCK-KO) mice impaired LTP in the BLA, while the application of CCK4 induced LTP after low-frequency stimulation (LFS). The entorhinal cortex (EC) CCK neurons project to the BLA and optogenetic activation of EC CCK afferents to BLA-promoted stress susceptibility through the release of CCK. We demonstrated that EC CCK neurons innervate CCKBR cells in the BLA and CCK-B receptor knockout (CCKBR-KO) mice impaired LTP in the BLA. Moreover, the CCKBR antagonists also blocked high-frequency stimulation (HFS) induced LTP formation in the BLA. Notably, CCKBR antagonists infusion into the BLA displayed an antidepressant-like effect in the chronic social defeat stress model. Together, these results indicate that CCKBR could be a potential target to treat depression.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Humanos , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Receptor de Colecistocinina B/fisiologia , Depressão/tratamento farmacológico , Colecistocinina/farmacologia , Colecistocinina/fisiologia
4.
Epilepsia ; 65(1): 218-237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032046

RESUMO

OBJECTIVE: Several studies have attributed epileptic activities in temporal lobe epilepsy (TLE) to the hippocampus; however, the participation of nonhippocampal neuronal networks in the development of TLE is often neglected. Here, we sought to understand how these nonhippocampal networks are involved in the pathology that is associated with TLE disease. METHODS: A kainic acid (KA) model of temporal lobe epilepsy was induced by injecting KA into dorsal hippocampus of C57BL/6J mice. Network activation after spontaneous seizure was assessed using c-Fos expression. Protocols to induce seizure using visual or auditory stimulation were developed, and seizure onset zone (SOZ) and frequency of epileptic spikes were evaluated using electrophysiology. The hippocampus was removed to assess seizure recurrence in the absence of hippocampus. RESULTS: Our results showed that cortical and hippocampal epileptic networks are activated during spontaneous seizures. Perturbation of these networks using visual or auditory stimulation readily precipitates seizures in TLE mice; the frequency of the light-induced or noise-induced seizures depends on the induction modality adopted during the induction period. Localization of SOZ revealed the existence of cortical and hippocampal SOZ in light-induced and noise-induced seizures, and the development of local and remote epileptic spikes in TLE occurs during the early stage of the disease. Importantly, we further discovered that removal of the hippocampi does not stop seizure activities in TLE mice, revealing that seizures in TLE mice can occur independent of the hippocampus. SIGNIFICANCE: This study has shown that the network pathology that evolves in TLE is not localized to the hippocampus; rather, remote brain areas are also recruited. The occurrence of light-induced or noise-induced seizures and epileptic discharges in epileptic mice is a consequence of the activation of nonhippocampal brain areas. This work therefore demonstrates the fundamental role of nonhippocampal epileptic networks in generating epileptic activities with or without the hippocampus in TLE disease.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Camundongos , Animais , Epilepsia do Lobo Temporal/patologia , Camundongos Endogâmicos C57BL , Convulsões/metabolismo , Hipocampo/patologia , Encéfalo/patologia , Epilepsia/metabolismo , Modelos Animais de Doenças , Ácido Caínico/farmacologia
5.
Cereb Cortex ; 33(9): 5636-5645, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36396729

RESUMO

Neural dynamics are altered in the primary visual cortex (V1) during critical period monocular deprivation (MD). Synchronization of neural oscillations is pertinent to physiological functioning of the brain. Previous studies have reported chronic disruption of V1 functional properties such as ocular dominance, spatial acuity, and binocular matching after long-term monocular deprivation (LTMD). However, the possible neuromodulation and neural synchrony has been less explored. Here, we investigated the difference between juvenile and adult experience-dependent plasticity in mice from intracellular calcium signals with fluorescent indicators. We also studied alterations in local field potentials power bands and phase-amplitude coupling (PAC) of specific brain oscillations. Our results showed that LTMD in juveniles causes higher neuromodulatory changes as seen by high-intensity fluorescent signals from the non-deprived eye (NDE). Meanwhile, adult mice showed a greater response from the deprived eye (DE). LTMD in juvenile mice triggered alterations in the power of delta, theta, and gamma oscillations, followed by enhancement of delta-gamma PAC in the NDE. However, LTMD in adult mice caused alterations in the power of delta oscillations and enhancement of delta-gamma PAC in the DE. These markers are intrinsic to cortical neuronal processing during LTMD and apply to a wide range of nested oscillatory markers.


Assuntos
Visão Monocular , Córtex Visual , Animais , Camundongos , Visão Monocular/fisiologia , Privação Sensorial/fisiologia , Córtex Visual/fisiologia , Dominância Ocular , Neurônios/fisiologia , Plasticidade Neuronal/fisiologia
6.
Cereb Cortex ; 33(10): 5863-5874, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36795038

RESUMO

The cortical distribution and functional role of cholecystokinin (CCK) are largely unknown. Here, a CCK receptor antagonist challenge paradigm was developed to assess functional connectivity and neuronal responses. Structural-functional magnetic resonance imaging and calcium imaging were undertaken in environmental enrichment (EE) and standard environment (SE) groups (naïve adult male mice, n = 59, C57BL/B6J, P = 60). Functional connectivity network-based statistics and pseudo-demarcation Voronoi tessellations to cluster calcium signals were used to derive region of interest metrics based on calcium transients, firing rate, and location. The CCK challenge elicited robust changes to structural-functional networks, decreased neuronal calcium transients, and max firing rate (5 s) of dorsal hippocampus in SE mice. However, the functional changes were not observed in EE mice, while the decreased neuronal calcium transients and max firing rate (5 s) were similar to SE mice. Decreased gray matter alterations were observed in multiple brain regions in the SE group due to CCK challenge, while no effect was observed in the EE group. The networks most affected by CCK challenge in SE included within isocortex, isocortex to olfactory, isocortex to striatum, olfactory to midbrain, and olfactory to thalamus. The EE group did not experience network changes in functional connectivity due to CCK challenge. Interestingly, calcium imaging revealed a significant decrease in transients and max firing rate (5 s) in the dorsal CA1 hippocampus subregion after CCK challenge in EE. Overall, CCK receptor antagonists affected brain-wide structural-functional connectivity within the isocortex, in addition to eliciting decreased neuronal calcium transients and max firing rate (5 s) in CA1 of the hippocampus. Future studies should investigate the CCK functional networks and how these processes affect isocortex modulation. Significance Statement  Cholecystokinin is a neuropeptide predominately found in the gastrointestinal system. Albeit abundantly expressed in neurons, the role and distribution of cholecystokinin are largely unknown. Here, we demonstrate cholecystokinin affects brain-wide structural-functional networks within the isocortex. In the hippocampus, the cholecystokinin receptor antagonist challenge decreases neuronal calcium transients and max firing rate (5 s) in CA1. We further demonstrate that mice in environmental enrichment do not experience functional network changes to the CCK receptor antagonist challenge. Environmental enrichment may afford protection to the alterations observed in control mice due to CCK. Our results suggest that cholecystokinin is distributed throughout the brain, interacts in the isocortex, and demonstrates an unexpected functional network stability for enriched mice.


Assuntos
Colecistocinina , Conectoma , Camundongos , Masculino , Animais , Receptores da Colecistocinina , Cálcio , Camundongos Endogâmicos C57BL , Hipocampo
7.
Neuroimage ; 252: 119016, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189359

RESUMO

Environmental enrichment induces widespread neuronal changes, but the initiation of the cascade is unknown. We ascertained the critical period of divergence between environmental enriched (EE) and standard environment (SE) mice using continuous infrared (IR) videography, functional magnetic resonance imaging (fMRI), and neuron level calcium imaging. Naïve adult male mice (n = 285, C57BL/6J, postnatal day 60) were divided into SE and EE groups. We assessed the linear time-series of motion activity using a novel structural break test which examined the dataset for change in circadian and day-by-day motion activity. fMRI was used to map brain-wide response using a functional connectome analysis pipeline. Awake calcium imaging was performed on the dorsal CA1 pyramidal layer. We found the preeminent behavioral feature in EE was a forward shift in the circadian rhythm, prolongation of activity in the dark photoperiod, and overall decreased motion activity. The crepuscular period of dusk was seen as the critical period of divergence between EE and SE mice. The functional processes at dusk in EE included increased functional connectivity in the visual cortex, motor cortex, retrosplenial granular cortex, and cingulate cortex using seed-based analysis. Network based statistics found a modulated functional connectome in EE concentrated in two hubs: the hippocampal formation and isocortical network. These hubs experienced a higher node degree and significant enhanced edge connectivity. Calcium imaging revealed increased spikes per second and maximum firing rate in the dorsal CA1 pyramidal layer, in addition to location (anterior-posterior and medial-lateral) effect size differences between EE and SE. The emergence of functional-neuronal changes due to enrichment consisted of enhanced hippocampal-isocortex functional connectivity and CA1 neuronal increased spiking linked to a circadian shift during the dusk period. Future studies should explore the molecular consequences of enrichment inducing shifts in the circadian period.


Assuntos
Cálcio , Meio Ambiente , Animais , Encéfalo/fisiologia , Hipocampo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
PLoS Biol ; 17(8): e3000417, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31469831

RESUMO

Threatening sounds can elicit a series of defensive behavioral reactions in animals for survival, but the underlying neural substrates are not fully understood. Here, we demonstrate a previously unexplored neural pathway in mice that projects directly from the auditory cortex (ACx) to the lateral periaqueductal gray (lPAG) and controls noise-evoked defensive behaviors. Electrophysiological recordings showed that the lPAG could be excited by a loud noise that induced an escape-like behavior. Trans-synaptic viral tracing showed that a great number of glutamatergic neurons, rather than GABAergic neurons, in the lPAG were directly innervated by those in layer V of the ACx. Activation of this pathway by optogenetic manipulations produced a behavior in mice that mimicked the noise-evoked escape, whereas inhibition of the pathway reduced this behavior. Therefore, our newly identified descending pathway is a novel neural substrate for noise-evoked escape and is involved in controlling the threat-related behavior.


Assuntos
Córtex Auditivo/fisiologia , Reação de Fuga/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Animais , Córtex Auditivo/metabolismo , Percepção Auditiva/fisiologia , Comportamento Animal/fisiologia , Mecanismos de Defesa , Aminoácidos Excitatórios/fisiologia , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Optogenética/métodos , Substância Cinzenta Periaquedutal/fisiologia , Som
9.
Proc Natl Acad Sci U S A ; 116(13): 6397-6406, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850520

RESUMO

Memory is stored in neural networks via changes in synaptic strength mediated in part by NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here we show that a cholecystokinin (CCK)-B receptor (CCKBR) antagonist blocks high-frequency stimulation-induced neocortical LTP, whereas local infusion of CCK induces LTP. CCK-/- mice lacked neocortical LTP and showed deficits in a cue-cue associative learning paradigm; and administration of CCK rescued associative learning deficits. High-frequency stimulation-induced neocortical LTP was completely blocked by either the NMDAR antagonist or the CCKBR antagonist, while application of either NMDA or CCK induced LTP after low-frequency stimulation. In the presence of CCK, LTP was still induced even after blockade of NMDARs. Local application of NMDA induced the release of CCK in the neocortex. These findings suggest that NMDARs control the release of CCK, which enables neocortical LTP and the formation of cue-cue associative memory.


Assuntos
Colecistocinina/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Córtex Auditivo/metabolismo , Comportamento Animal , Colecistocinina/genética , Estimulação Elétrica , Córtex Entorrinal/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptor de Colecistocinina B/efeitos dos fármacos , Receptor de Colecistocinina B/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/metabolismo
10.
J Neurosci ; 40(10): 2025-2037, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31980587

RESUMO

Plastic change in neuronal connectivity is the foundation of memory encoding. It is not clear whether the changes during anesthesia can alter subsequent behavior. Here, we demonstrated that in male rodents under anesthesia, a visual stimulus (VS) was associated with electrical stimulation of the auditory cortex or natural auditory stimulus in the presence of cholecystokinin (CCK), which guided the animals' behavior in a two-choice auditory task. Auditory neurons became responsive to the VS after the pairings. Moreover, high-frequency stimulation of axon terminals of entorhinal CCK neurons in the auditory cortex enabled LTP of the visual response in the auditory cortex. Such pairing during anesthesia also generated VS-induced freezing in an auditory fear conditioning task. Finally, we verified that direct inputs from the entorhinal CCK neurons and the visual cortex enabled the above neural plasticity in the auditory cortex. Our findings suggest that CCK-enabled visuoauditory association during anesthesia can be translated to the subsequent behavior action.SIGNIFICANCE STATEMENT Our study provides strong evidence for the hypothesis that cholecystokinin plays an essential role in the formation of cross-modal associative memory. Moreover, we demonstrated that an entorhinal-neocortical circuit underlies such neural plasticity, which will be helpful to understand the mechanisms of memory formation and retrieval in the brain.


Assuntos
Colecistocinina/metabolismo , Córtex Entorrinal/fisiologia , Memória/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Estimulação Acústica , Anestesia , Animais , Aprendizagem por Associação/fisiologia , Córtex Auditivo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estimulação Luminosa , Ratos , Ratos Sprague-Dawley , Córtex Visual/fisiologia
11.
FASEB J ; 33(6): 6838-6851, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30808210

RESUMO

The channel that governs mechanotransduction (MT) by hair cells in the inner ear has been investigated intensively for 4 decades, but its precise molecular composition remains enigmatic. Transmembrane channel-like protein 1 (TMC1) was recently identified as a component of the MT channel, and lipoma HMGIC fusion partner-like 5 (LHFPL5) is considered to be part of the MT complex and may functionally couple the tip link to the MT channel. As components of the MT complex, TMC1 and LHFPL5 are expected to localize at the lower end of the tip link in hair cells, a notion generally supported by previous studies on neonatal mice. However, the localization of these 2 proteins, particularly in the hair cells of adult mice, remains incompletely elucidated. Because determination of TMC1 and LHFPL5 localization at distinct developmental stages is essential for understanding their function and regulation, we used several approaches to examine the localization of these proteins in neonatal and adult hair cells in the mouse. We report several notable findings: 1) TMC1 and LHFPL5 predominantly localize at the tip of the shorter rows of stereocilia in neonatal hair cells, which largely verifies the previously published findings in neonatal hair cells; 2) LHFPL5 persists in the hair bundle of hair cells after postnatal day (P)7, which clarifies the previously reported unexpected absence of LHFPL5 after P7 and supports the view that LHFPL5 is a permanent component in the MT complex; and 3) TMC1 and LHFPL5 remain at the tip of the shorter rows of stereocilia in adult outer hair cells, but in adult inner hair cells, TMC1 is uniformly distributed in both the tallest row and the shorter rows of stereocilia, whereas LHFPL5 is uniformly distributed in the shorter rows of stereocilia. These findings raise intriguing questions regarding the turnover rate, regulation, additional functions, and functional interaction of TMC1 and LHFPL5. Our study confirms the previous findings in neonatal hair cells and reveals several previously unidentified aspects of TMC1 and LHFPL5 localization in more mature hair cells.-Li, X., Yu, X., Chen, X., Liu, Z., Wang, G., Li, C., Wong, E. Y. M., Sham, M. H., Tang, J., He, J., Xiong, W., Liu, Z., Huang, P. Localization of TMC1 and LHFPL5 in auditory hair cells in neonatal and adult mice.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana/metabolismo , Animais , Animais Recém-Nascidos , Sistemas CRISPR-Cas , Mecanotransdução Celular , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout
12.
Proc Natl Acad Sci U S A ; 114(33): E6972-E6981, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760982

RESUMO

The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal-cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal-cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal-cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing.


Assuntos
Córtex Cerebral , Conectoma , Giro Denteado , Imageamento por Ressonância Magnética , Descanso/fisiologia , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Giro Denteado/diagnóstico por imagem , Giro Denteado/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
13.
Nano Lett ; 18(2): 948-956, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29278506

RESUMO

Recent advances in upconversion technology have enabled optogenetic neural stimulation using remotely applied optical signals, but limited success has been demonstrated for neural inhibition by using this method, primarily due to the much higher optical power and more red-shifted excitation spectrum that are required to work with the appropriate inhibitory opsin proteins. To overcome these limitations, core-shell-shell upconversion nanoparticles (UCNPs) with a hexagonal phase are synthesized to optimize the doping contents of ytterbium ions (Yb3+) and to mitigate Yb-associated concentration quenching. Such UCNPs' emission contains an almost three-fold enhanced peak around 540-570 nm, matching the excitation spectrum of a commonly used inhibitory opsin protein, halorhodopsin. The enhanced UCNPs are utilized as optical transducers to develop a fully implantable upconversion-based device for in vivo tetherless optogenetic inhibition, which is actuated by near-infrared (NIR) light irradiation without any electronics. When the device is implanted into targeted sites deep in the rat brain, the electrical activity of the neurons is reliably inhibited with NIR irradiation and restores to normal level upon switching off the NIR light. The system is further used to perform tetherless unilateral inhibition of the secondary motor cortex in behaving mice, achieving control of their motor functions. This study provides an important and useful supplement to the upconversion-based optogenetic toolset, which is beneficial for both basic and translational neuroscience investigations.

14.
Nat Methods ; 10(1): 84-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23223155

RESUMO

Human neural stem cells hold great promise for research and therapy in neural disease. We describe the generation of integration-free and expandable human neural progenitor cells (NPCs). We combined an episomal system to deliver reprogramming factors with a chemically defined culture medium to reprogram epithelial-like cells from human urine into NPCs (hUiNPCs). These transgene-free hUiNPCs can self-renew and can differentiate into multiple functional neuronal subtypes and glial cells in vitro. Although functional in vivo analysis is still needed, we report that the cells survive and differentiate upon transplant into newborn rat brain.


Assuntos
Encéfalo/citologia , Diferenciação Celular , Reprogramação Celular , Células Epiteliais/citologia , Células-Tronco Neurais/citologia , Engenharia Tecidual/métodos , Urina/citologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Western Blotting , Perfilação da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Células-Tronco Neurais/transplante , Neuroglia/citologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante de Células-Tronco , Urina/química
15.
J Neurosci ; 33(24): 9963-74, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23761892

RESUMO

Damage to the medial temporal lobe impairs the encoding of new memories and the retrieval of memories acquired immediately before the damage in human. In this study, we demonstrated that artificial visuoauditory memory traces can be established in the rat auditory cortex and that their encoding and retrieval depend on the entorhinal cortex of the medial temporal lobe in the rat. We trained rats to associate a visual stimulus with electrical stimulation of the auditory cortex using a classical conditioning protocol. After conditioning, we examined the associative memory traces electrophysiologically (i.e., visual stimulus-evoked responses of auditory cortical neurons) and behaviorally (i.e., visual stimulus-induced freezing and visual stimulus-guided reward retrieval). The establishment of a visuoauditory memory trace in the auditory cortex, which was detectable by electrophysiological recordings, was achieved over 20-30 conditioning trials and was blocked by unilateral, temporary inactivation of the entorhinal cortex. Retrieval of a previously established visuoauditory memory was also affected by unilateral entorhinal cortex inactivation. These findings suggest that the entorhinal cortex is necessary for the encoding and involved in the retrieval of artificial visuoauditory memory in the auditory cortex, at least during the early stages of memory consolidation.


Assuntos
Córtex Auditivo/fisiologia , Mapeamento Encefálico , Córtex Entorrinal/fisiologia , Rememoração Mental/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Córtex Auditivo/citologia , Córtex Auditivo/lesões , Condicionamento Clássico/fisiologia , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/efeitos adversos , Extinção Psicológica , Feminino , Lateralidade Funcional , Masculino , Vias Neurais/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Quinoxalinas/efeitos adversos , Ratos , Ratos Sprague-Dawley , Recompensa , Fatores de Tempo
16.
Neurobiol Learn Mem ; 116: 155-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25452085

RESUMO

As the gateway between the hippocampal system and the neocortex, the entorhinal cortex (EC) is hypothesized to be the hub in which the transformation of recent memory to remote memory is processed. We explored the role of the EC on the retrieval of recent and remote associative fear memory. A within-subject approach was adopted to compare the freezing rates of rats in EC intact and EC inactivated conditions following trace fear conditioning. The EC was inactivated by infusing an AMPA antagonist. The fear conditioning used a combined visual and auditory conditioned stimulus with a foot shock. On week 1 following the conditioning, the rats in the EC intact condition exhibited a freezing rate of 92.4±9.5% in response to the light stimulus compared with a 6.3±7.9% freezing rate in the EC inactivated condition. The freezing rates were 87.0±17.8% and 4.7±6.5% on week 2 in the EC intact and inactivated conditions, respectively. These results indicate that the EC participates in the retrieval of associative memory. Extinction of the fear memory was observed in the EC intact condition, as the mean freezing rate decreased to 62.7±23.0% on week 4 and 41.2±26.4% on week 5. However, the freezing rate increased to 26.8±14.2% on week 4 and 22.3±14.4% on week 5 in the EC inactivated condition. The normalized dependence of fear memory retrieval on the EC was 93.2±8.3% on week 1, and significantly decreased on weeks 4 and 5. In summary, the retrieval of associative memory depends on the EC, but this dependence decreases over time.


Assuntos
Aprendizagem por Associação/fisiologia , Condicionamento Psicológico/fisiologia , Córtex Entorrinal/fisiologia , Medo/fisiologia , Memória/fisiologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Sinais (Psicologia) , Córtex Entorrinal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Memória/efeitos dos fármacos , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Fatores de Tempo
17.
J Neuroeng Rehabil ; 11: 107, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24990580

RESUMO

BACKGROUND: Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. METHODS: We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. RESULTS: We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. CONCLUSION: We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.


Assuntos
Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Traumatismos da Medula Espinal/reabilitação , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Cobaias , Traumatismos da Medula Espinal/fisiopatologia
18.
CNS Neurosci Ther ; 30(3): e14422, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37715582

RESUMO

AIMS: Major depressive disorder is a severe psychiatric disorder that afflicts ~17% of the world population. Neuroimaging investigations of depressed patients have consistently reported the dysfunction of the basolateral amygdala in the pathophysiology of depression. However, how the BLA and related circuits are implicated in the pathogenesis of depression is poorly understood. METHODS: Here, we combined fiber photometry, immediate early gene expression (c-fos), optogenetics, chemogenetics, behavioral analysis, and viral tracing techniques to provide multiple lines of evidence of how the BLA neurons mediate depressive-like behavior. RESULTS: We demonstrated that the aversive stimuli elevated the neuronal activity of the excitatory BLA neurons (BLACAMKII neurons). Optogenetic activation of CAMKII neurons facilitates the induction of depressive-like behavior while inhibition of these neurons alleviates the depressive-like behavior. Next, we found that the chemogenetic inhibition of GABAergic neurons in the BLA (BLAGABA ) increased the firing frequency of CAMKII neurons and mediates the depressive-like phenotypes. Finally, through fiber photometry recording and chemogenetic manipulation, we proved that the activation of BLAGABA neurons inhibits BLACAMKII neuronal activity and alleviates depressive-like behavior in the mice. CONCLUSION: Thus, through evaluating BLAGABA and BLACAMKII neurons by distinct interaction, the BLA regulates depressive-like behavior.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Transtorno Depressivo Maior/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
STAR Protoc ; 5(1): 102860, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306268

RESUMO

Cholecystokinin (CCK) is the most abundant neuropeptide that broadly regulates the physiological status of animals. Here, we present a two-color laser theta burst stimulation (L-TBS) protocol for simultaneous activation of Schaffer collateral and perforant pathway in the hippocampus of CCK Cre mice. We describe steps for heterosynaptic long-term potentiation induction by L-TBS. This technique allows for the examination of the neurotransmitter roles in synaptic modulation and facilitates the exploration of pathological mechanisms in genetic models of brain disorders in mice. For complete details on the use and execution of this protocol, please refer to Su et al.1.


Assuntos
Potenciação de Longa Duração , Opsinas , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Opsinas/metabolismo , Hipocampo/metabolismo
20.
Stem Cell Rev Rep ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951308

RESUMO

Mutations in STAMBP have been well-established to cause congenital human microcephaly-capillary malformation (MIC-CAP) syndrome, a rare genetic disorder characterized by global developmental delay, severe microcephaly, capillary malformations, etc. Previous biochemical investigations and loss-of-function studies in mice have provided insights into the mechanism of STAMBP, however, it remains controversial how STAMBP deficiency leads to malformation of those affected tissues in patients. In this study, we investigated the function and underlying mechanism of STAMBP during neural differentiation of human embryonic stem cells (hESCs). We found that STAMBP is dispensable for the pluripotency maintenance or neural differentiation of hESCs. However, neural progenitor cells (NPCs) derived from STAMBP-deficient hESCs fail to be long-term maintained/expanded in vitro. We identified the anti-apoptotic protein CFLAR is down-regulated in those affected NPCs and ectopic expression of CFLAR rescues NPC defects induced by STAMBP-deficiency. Our study not only provides novel insight into the mechanism of neural defects in STAMBP mutant patients, it also indicates that the death receptor mediated apoptosis is an obstacle for long-term maintenance/expansion of NPCs in vitro thus counteracting this cell death pathway could be beneficial to the generation of NPCs in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA