Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Chemphyschem ; 24(24): e202300527, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37789501

RESUMO

Despite the widespread use in industrial production, benzene derivatives are harmful to both human beings and the environment. The control of these substances has become an important subject of scientific research. This study introduces a new approach for adsorption and separation of benzene derivatives utilizing pagoda[n]arene based supramolecular materials. Density functional theory calculations were employed to investigate the molecular recognition mechanism of benzene derivatives by pagoda[4]arenes and pagoda[5]arenes (Pa[4]As and Pa[5]As). Results indicate that Pa[4]As and Pa[5]As can effectively accommodate benzene derivatives through non-covalent interactions, leading to the formation of stable host-guest complexes. Additionally, molecular dynamics simulations revealed that both crystalline and non-crystalline supramolecular aggregates of Pa[4]As and Pa[5]As possess the ability to adsorb benzene derivatives and maintain the stability of the adsorption. Moreover, increasing the temperature causes benzene derivatives to desorb from the adsorbing aggregates, and thus the material can be reutilized.

2.
Environ Sci Technol ; 57(47): 18991-18999, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37243626

RESUMO

This study explores the formation of bromate (BrO3-) in the copresence of Fe(VI) and bromide (Br-). It challenges previous beliefs about the role of Fe(VI) as a green oxidant and highlights the crucial role of intermediates Fe(V) and Fe(IV) in the conversion of Br- to BrO3-. The results show that the maximum concentration of BrO3- of 48.3 µg/L was obtained at 16 mg/L Br- and that the contribution of Fe(V)/Fe(IV) to the conversion was positively related to pH. The study suggests that a single-electron transfer from Br- to Fe(V)/Fe(IV) along with the generation of reactive bromine radicals is the first step of Br- conversion, followed by the formation of OBr- which was then oxidized to BrO3- by Fe(VI) and Fe(V)/Fe(IV). Some common background water constituents (e.g., DOM, HCO3-, and Cl-) significantly inhibited BrO3- formation by consuming Fe(V)/Fe(IV) and/or scavenging the reactive bromine species. While investigations proposing to promote Fe(V)/Fe(IV) formation in Fe(VI)-based oxidation to enhance its oxidation capacity have been rapidly accumulated recently, this work called attention to the considerable formation of BrO3- in this process.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Brometos , Bromo , Bromatos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Oxirredução
3.
Environ Res ; 207: 112623, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990610

RESUMO

Metal-free photocatalysts for high efficient photocatalytic degradation of pollutants have attracted growing concern in recent years. Herein, relying on density functional theory (DFT) calculations, boron and phosphorus doped C2N layers were explored for the potential of utilization as photocatalysts for 4, 5-dichloroguaiacol (4, 5-DCG) removal. Our computations revealed that the adsorption energy of 4, 5-DCG on B@N-doped C2N layers were 26.56 kcal mol-1, and the ΔG≠ of initial reactions of 4, 5-DCG with OH were also reduced onto the B@N-doped C2N substrates. The band gap of B@N-doped C2N was 2.27 eV. The obtained results showed that the doping of boron atom into C2N layer narrows bandgap, and retains well catalytic performance and adsorption properties. Hence, B@N-doped C2N layer is a promising photocatalyst for organic pollutants removal. Possible degradation pathways of 4, 5-DCG and aquatic toxicity assessment during degradation were also carried out. Products with higher toxicity would be formed and the transformation products were still toxic to three nutrient levels of aquatic organisms (green algae, fish, and daphnia).


Assuntos
Luz , Nitrilas , Adsorção , Catálise
4.
J Environ Sci (China) ; 115: 392-402, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969467

RESUMO

Catechol pollutants (CATPs) serving as chelating agents could coordinate with many metal ions to form various CATPs-metal complexes. Little information is available on the effects of complexation of metal ions on CATPs degradation. This work presents a systematical study of •OH-mediated degradation of catechol and catechol-metal complexes over the whole pH range in advanced oxidation processes (AOPs). Results show that the pH-dependent complexation of metal ions (Zn2+, Cu2+, Ti4+ and Fe3+) promotes the deprotonation of catechol under neutral and even acidic conditions. The radical adduct formation (RAF) reactions are both thermodynamically and kinetically favorable for all dissociation and complexation species, and OH/O- group-containing C positions are more vulnerable to •OH attack. The kinetic results show that the complexation of the four metal ions offers a wide pH range of effectiveness for catechol degradation. At pH 7, the apparent rate constant (kapp) values for different systems follow the order of catechol+Ti4+ ≈ catechol+Zn2+ > catechol+Cu2+ > catechol+Fe3+ > catechol. The mechanistic and kinetic results would greatly improve our understanding of the degradation of CATPs-metal and other organics-metal complexes in AOPs. The toxicity assessment indicates that the •OH-based AOPs have the ability for decreasing the toxicity and increasing the biodegradability during the processes of catechol degradation.


Assuntos
Catecóis , Metais , Concentração de Íons de Hidrogênio , Hidroxilação , Íons
5.
J Phys Chem A ; 125(35): 7705-7715, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34459596

RESUMO

Pyrethroid, a pesticide widely used worldwide, could mimic, block, or synergize the effects of endogenous hormones in humans or mammals after entering into the atmosphere and after being sprayed and applied in large quantities. This research aims to study the mechanism, kinetics, and eco-toxicity evaluation of the ozonolysis of permethrin (PER)-one of the typical pyrethroid (type I) pesticides. Existing experimental studies only predicted that ozonolysis of PER could generate a cycloperoxy analogue of PER (IM13-1-11), and the reaction mechanism has not yet been completed. To make up for the lack of experimental results, the 13 primary reaction pathways of PER and ozone, as well as the subsequent reactions of Criegee intermediates with small molecules such as NOx, COx, SO2, and O2, have been studied to propose new reaction paths by quantum chemical calculations in this work. We calculated the total reaction rate constant of PER and ozone at 298 K and 1 atm based on the calculated thermodynamic data and the transition state theory (TST), which was compared with the experimental values to prove the reliability of our results. Based on the quantitative structure and activity relationship, we predicted the acute and chronic toxicity of PER and its products of ozonolysis to three representative organisms-fish, daphnia, and green algae to avoid animal experiments. The results show that ozonolysis products of PER are still extremely harmful to the environment and should be taken seriously, although the products have less toxicity than PER.


Assuntos
Atmosfera/química , Ozônio/química , Permetrina/química , Permetrina/toxicidade , Humanos , Cinética , Reprodutibilidade dos Testes , Termodinâmica
6.
J Am Chem Soc ; 142(31): 13533-13543, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32650640

RESUMO

Metal-organic frameworks (MOFs) can act as a platform for the heterogenization of molecular catalysts, providing improved stability, allowing easy catalyst recovery and a route toward structural elucidation of the active catalyst. We have developed a MOF, 1, possessing vacant N,N-chelating sites which are accessible via the porous channels that penetrate the structure. In the present work, cationic rhodium(I) norbornadiene (NBD) and bis(ethylene) (ETH) complexes paired with both noncoordinating and coordinating anions have been incorporated into the N,N-chelation sites of 1 via postsynthetic metalation and facile anion exchange. Exploiting the crystallinity of the host framework, the immobilized Rh(I) complexes were structurally characterized using X-ray crystallography. Ethylene hydrogenation catalysis by 1·[Rh(NBD)]X and 1·[Rh(ETH)2]X (X = Cl and BF4) was studied in the gas phase (2 bar, 46 °C) to reveal that 1·[Rh(ETH)2](BF4) was the most active catalyst (TOF = 64 h-1); the NBD materials and the chloride salt were notably less active. On the basis of these observations, the activity of the Rh(I) bis(ethylene) complexes, 1·[Rh(ETH)2]BF4 and 1·[Rh(ETH)2]Cl, in butene isomerization was also studied using gas-phase NMR spectroscopy. Under one bar of butene at 46 °C, 1·[Rh(ETH)2]BF4 rapidly catalyzes the conversion of 1-butene to 2-butene with a TOF averaging 2000 h-1 over five cycles. Notably, the chloride derivative, 1 [Rh(ETH)2]Cl displays negligible activity in comparison. XPS analysis of the postcatalysis sample, supported by DFT calculations, suggest that the catalytic activity is inhibited by the strong interactions between a Rh(III) allyl hydride intermediate and the chloride anion.

7.
J Phys Chem A ; 124(52): 10967-10976, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33346642

RESUMO

Parabens are widely employed in toothpaste, cosmetics, textiles, beverages, and preservatives, causing a serious environmental concern because they are endocrine-disrupting compounds (EDCs). As one of the highly reactive oxidants, ozone has a great effect on EDC removal. To understand the degradation and transformation of parabens in the aquatic environment and their toxicity to aquatic organisms, the degradation reaction of parabens initiated by O3 was studied meticulously using quantum chemical calculations. The degradation process includes multiple initial reaction channels and consequent degradation pathways of the Criegee intermediates. Through thermodynamic data, the rate constants were computed using the transition state theory (TST). At a temperature of 298 K and a pressure of 1 atm, the calculated rate constants were 3.92 and 3.94 M-1 s-1 for methylparaben (MPB) and ethylparaben (EPB), respectively. The rate constants increased as the temperature increased or as the length of the alkyl chain on the benzene ring increased. Through the ecotoxicity assessment procedure, the ecotoxicity of parabens and the products in the degradation process can be assessed. Most degradation byproducts are either less toxic or nontoxic. Some byproducts are still harmful, such as oxalaldehyde (P2) and ethyl 2,3-dioxopropanoate (P10). Furthermore, the ecological toxicity of parabens increased with augmentation of the alkyl chain on the benzene ring. The effect of the alkyl chain length on the benzene ring in the compound cannot be ignored.

8.
Environ Res ; 188: 109713, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32535355

RESUMO

The pharmaceutical and personal care products (PPCPs) in aquatic environment have aroused more interest recently. Many of them are hard to degrade by the typical biological treatments. Diclofenac (DCF), as a significant anti-inflammatory drug, is a typical PPCP and widely existed in water environment. It is reported that DCF has adverse effects on aquatic organisms. This work aims to investigate the mechanism, kinetics and ecotoxicity assessment of DCF transformation initiated by O3 in aqueous solution, and provide a solution to the degradation of DCF. The O3-initiated oxidative degradations of DCF were performed by quantum chemical calculations, including thirteen primary reaction pathways and subsequent reactions of the Criegee intermediates with H2O, NO and O3. Based on the thermodynamic data, the kinetic parameters were calculated by the transition state theory (TST). The total reaction rate constant of DCF initiated by O3 is 2.57 × 103 M-1 s-1 at 298 K and 1 atm. The results show that the reaction rate constants have a good correlation with temperature. The acute and chronic toxicities of DCF and its degradation products were evaluated at three different trophic levels by the ECOSAR program. Most products are converted into less toxic or harmless products. Oxalaldehyde (P3) and N-(2,6-dichlorophenyl)-2-oxoacetamide (P6) are still harmful to the three aquatic organisms, which should be paid more attention in the future.


Assuntos
Ozônio , Poluentes Químicos da Água , Diclofenaco/toxicidade , Cinética , Oxirredução , Ozônio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
9.
Ecotoxicol Environ Saf ; 191: 110175, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954924

RESUMO

Prosulfocarb (PSC) is a thiocarbamate herbicide mainly used in winter cereals and a relevant aerosol precursor under OH radicals (OH) photooxidation conditions. We investigated the environmental risks, mechanisms, kinetics and products for the PSC withOH by employing theoretical chemical calculations. Two reaction types of H-abstraction andOH-addition reactions were taken into account. Whether in the atmosphere or aqueous particles, the most favorable pathway was the H-abstraction in the N-alkyl groups close to nitrogen atom. Subsequent reactions of primary intermediates were considered at different conditions. The total rate constants were determined as 2.62 × 10-10 cm3 molecule-1 s-1 and 4.96 × 10-11 cm3 molecule-1 s-1 at 298 K in atmosphere and aqueous particles, respectively. In natural water with theOH concentration of 10-15-10-18 mol l-1, the half-lives (t1/2) of PSC in theOH-initiated reactions were calculated as t1/2 = 2.40 × 104-2.40 × 107 s. With regard to the influence on human health and the ecosystem, oxidized products of PSC were estimated to be mutagenicity negative and had no obvious bioaccumulation potential. The aquatic toxicity of PSC and its degradation products was evaluated and the assessment results showed that the degradation of PSC was a toxicity-reduced process but they were still at toxic and harmful levels.


Assuntos
Aerossóis/química , Carbamatos/química , Poluentes Ambientais/química , Herbicidas/química , Radical Hidroxila/química , Aerossóis/toxicidade , Carbamatos/toxicidade , Poluentes Ambientais/toxicidade , Meia-Vida , Herbicidas/toxicidade , Cinética , Oxirredução , Medição de Risco
10.
Ecotoxicol Environ Saf ; 204: 110977, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32739673

RESUMO

Indirect oxidation induced by reactive free radicals, such as hydroxyl radical (HO), sulfate radical (SO4-) and carbonate radical (CO3-), plays an important or even crucial role in the degradation of micropollutants. Thus, the coadjutant degradation of phenacetin (PNT) by HO, SO4- and CO3-, as well as the synergistic effect of O2 on HO and HO2 were studied through mechanism, kinetics and toxicity evaluation. The results showed that the degradation of PNT was mainly caused by radical adduct formation (RAF) reaction (69% for Г, the same as below) and H atom transfer (HAT) reaction (31%) of HO. For the two inorganic anionic radicals, SO4- initiated PNT degradation by sequential radical addition-elimination (SRAE; 55%), HAT (28%) and single electron transfer (SET; 17%) reactions, while only by HAT reaction for CO3-. The total initial reaction rate constants of PNT by three radicals were in the order: SO4- > HO > CO3-. The kinetics of PNT degradation simulated by Kintecus program showed that UV/persulfate could degrade target compound more effectively than UV/H2O2 in ultrapure water. In the subsequent reaction of PNT with O2, HO and HO2, the formation of mono/di/tri-hydroxyl substitutions and unsaturated aldehydes/ketones/alcohols were confirmed. The results of toxicity assessment showed that the acute and chronic toxicity of most products to fish increased and to daphnia decreased, and acute toxicity to green algae decreased while chronic toxicity increased.


Assuntos
Carbonatos/toxicidade , Peróxido de Hidrogênio/toxicidade , Fenacetina/toxicidade , Sulfatos/toxicidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Animais , Carbonatos/química , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Peixes , Peróxido de Hidrogênio/química , Íons/química , Íons/toxicidade , Cinética , Modelos Químicos , Oxigênio/química , Fenacetina/química , Sulfatos/química , Água/química
11.
J Phys Chem A ; 123(13): 2745-2755, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30840458

RESUMO

Ozonolysis of unsaturated ketones is a common atmospheric chemical process that plays a significant role in controlling the atmospheric budget of OH and O3, organic acids, and secondary organic aerosols (SOA). In this work, the detailed reaction mechanism and rate coefficients for the reactions of O3 with two unsaturated ketones, 3-methyl-3-buten-2-one (MBO332) and 3-methyl-3-penten-2-one (MPO332), were investigated by using density functional theory (DFT) and Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The results indicate that the major products are butanedione and formaldehyde for MBO332, and butanedione and acetaldehyde for MPO332. Possible reaction mechanism and thermodynamic parameters of some complex stable Criegee intermediates (SCIs) RR'COO were also be investigated in this study. Some organic peroxides can be regarded as the main products for the further reactions of SCIs. The rate constants calculated with O3 are 2.59 × 10-16 cm3 molecule-1 s-1 and 2.28 × 10-16 cm3 molecule-1 s-1 for MBO332 and MPO332 at 298 K and 1 atm. The total rate constant is negatively correlated with temperature (200-400 K) and positively correlated with pressure. The atmospheric half-lives of MBO332 and MPO332 based on O3 are estimated.

12.
J Phys Chem A ; 119(24): 6404-11, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26010173

RESUMO

This study investigates the decomposition of 2,2',4,4',5-pentabrominated diphenyl ether (BDE99), a commonly detected pollutant in the environment. Debromination channels yielding tetrabrominated diphenyl ethers and hydrogen abstracting aromatic bromine atom formations play significant roles in the reaction of BDE99 + H, in which the former absolutely predominates bimolecular reactions. Polybrominated dibenzo-p-dioxins (PBDDs) and polybrominated dibenzofurans (PBDFs) can be produced during BDE99 pyrolysis, especially for PBDFs under inert conditions. The expected dominant pathways in a closed system are debromination products and PBDF formations. The bimolecular reaction with hydroxyl radical mainly leads to hydroxylated BDE99s rather than hydroxylated tetrabrominated diphenyl ethers. PBDDs are then generated from ortho-hydroxylated PBDEs. HO2 radical reactions rarely proceed. The total rate constants for the BDE99 reaction with hydrogen atoms and hydroxyl radicals exhibit positive dependence on temperature with values of 1.86 × 10(-14) and 5.24 × 10(-14) cm(3) molecule(-1) s(-1) at 298.15 K, respectively.

13.
J Phys Chem A ; 119(4): 719-27, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25565072

RESUMO

The Cl-initiated oxidation reactions of methyl vinyl ether (MVE) are analyzed by using the high-level composite method CBS-QB3. Detailed chemistry for the reactions of MVE with chlorine atoms is proposed according to the calculated thermodynamic data. The primary eight channels, including two Cl-addition reactions and six H-abstraction reactions, are discussed. In accordance with the further investigation of the two dominant additional routes, formyl chloride and formaldehyde are the major products. Over the temperature range of 200-400 K and the pressure range of 100-2000 Torr, the rate constants of primary reactions are calculated by employing the MESMER program. H-abstraction channels are negligible according to the value of rate constants. During the studied temperature range, the Arrhenius equation is obtained as ktot = 5.64 × 10(-11) exp(215.1/T). The total rate coefficient is ktot = 1.25 × 10(-10) cm(3) molecule(-1) s(-1) at 298 K and 760 Torr. Finally, the atmospheric lifetime of MVE with respect to Cl is estimated to be 2.23 h.


Assuntos
Atmosfera/química , Cloretos/química , Éteres Metílicos/química , Teoria Quântica , Compostos de Vinila/química , Oxirredução
14.
Mar Environ Res ; 198: 106495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688108

RESUMO

Understanding the prolonged spatiotemporal evolution and identifying the underlying causes of Ulva prolifera green tides play pivotal roles in managing such occurrences, restoring water ecology, and fostering sustainable development in marine ecosystems. Satellite remote sensing represents the primary choice for monitoring Ulva prolifera green tides due to its capability for extensive, long-term ocean monitoring. Based on multi-source remote sensing images, ecological and environmental datasets, and machine learning algorithms, therefore, this study focused on "remote sensing modelling - evolution history - change trends - mechanism analysis" to elucidate both the remote sensing monitoring models and the underlying driving factors governing the spatiotemporal evolution of Ulva prolifera green tides in the highly impacted South Yellow Sea of China. With the use of GOCI Ⅰ/Ⅱ images, an hybrid remote sensing extraction model merging the robustness of the random forest (RF) model and the optical algae cloud index (ACI) was established to map Ulva prolifera distribution patterns. The ACI-RF method exhibited exceptional performance, with an F1 score surpassing 0.95, outperforming alternative methods such as the support vector machine (SVM) and K-nearest neighbour (KNN) methods. On the basis, we analysed the evolutionary trends and the driving factors determining these distribution patterns using meteorological data, runoff data, and data on various water quality parameters (SST, ocean current speed, wind speed, precipitation, DO, PAR, Si, NO3-, PO43-and N/P). Over the period from 2011 to 2022, excluding 2021, there was a notable decline in the area of Ulva prolifera green tides, varying between 397 and 2689.9 km2, with an average annual reduction rate of 3%. The maximum annual biomass varied between 0.12 and 15.9 kt. Notably, more than 75% of the area of Ulva prolifera green tides exhibited northward drift, which was significantly influenced by northern currents and wind fields. The analysis of driving factors indicates that factors such as average sea surface temperature, eastward wind speed, northward wind speed, precipitation, PO43- and N/P/Si significantly influence the biological growth rate of Ulva prolifera. Furthermore, coastal land use change and surface runoff, particularly surface runoff in June, significantly impacted the growth rate of Ulva prolifera, with Pearson correlation coefficients of 0.74 and 0.67, respectively. Against the background of global warming and severe deterioration in the marine environment, Ulva prolifera blooms persist. Consequently, two distinct management strategies were proposed based on the distribution patterns and cause analysis results for addressing Ulva prolifera green tides: establishing a continuous protection framework for rivers, lakes, and nearshore areas to mitigate pollutant inputs and implementing precise environmental monitoring measures in urban expansion areas and farmlands to combat overgrowth-induced green tides. This methodology could be applied in other regions affected by marine ecological disasters, and the criteria for selecting influencing factors offer a valuable reference for designing tailored and proactive measures aimed at controlling Ulva prolifera green tides.


Assuntos
Algoritmos , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Ulva , Ulva/fisiologia , Monitoramento Ambiental/métodos , China , Eutrofização , Ecossistema , Algoritmo Florestas Aleatórias , Algas Comestíveis
15.
Environ Sci Technol ; 47(15): 8238-47, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23855483

RESUMO

2,4,4'-Tribromodiphenyl ether (BDE-28) was selected as a typical congener of polybrominated diphenyl ethers (PBDEs) to examine its fate both in the atmosphere and in water solution. All the calculations were obtained at the ground state. The mechanism result shows that the oxidations between BDE-28 and OH radicals are highly feasible especially at the less-brominated phenyl ring. Hydroxylated dibrominated diphenyl ethers (OH-PBDEs) are formed through direct bromine-substitution reactions (P1∼P3) or secondary reactions of OH-adducts (P4∼P8). Polybrominated dibenzo-p-dioxins (PBDDs) resulting from o-OH-PBDEs are favored products compared with polybrominated dibenzofurans (PBDFs) generated by bromophenols and their radicals. The complete degradation of OH adducts in the presence of O2/NO, which generates unsaturated ketones and aldehydes, is less feasible compared with the H-abstraction pathways by O2. Aqueous solution reduces the feasibility between BDE-28 and the OH radical. The rate constant of BDE-28 and the OH radical is determined to be 1.79 × 10(-12) cm(3) molecule(-1) s(-1) with an atmospheric lifetime of 6.7 days.


Assuntos
Radical Hidroxila/química , Bifenil Polibromatos/química , Cinética , Oxirredução
16.
J Environ Chem Eng ; 11(1): 109193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36569264

RESUMO

Residues in surface water of ribavirin, which used extensively during the COVID-19 pandemic, have become an emerging issue due to its adverse impact on the environment and human health. UV/H2O2 and UV/peroxydisulfate (PDS) have different degradation effects on ribavirin, and the same operational parameter have different effects on the two processes. In this study, the reaction mechanism and degradation efficiency for ribavirin were studied to compare the differences under UV/H2O2 and UV/PDS processes. We calculated the total rate constants of ribavirin with HO• and SO4 •- in the liquid phase as 2.73 × 108 and 9.39 × 105 M-1s-1. The density functional theory (DFT) calculation results showed that HO• and SO4 •- react more readily with ribavirin via H-abstraction (HAA). The nitrogen-containing heterocyclic ring is difficult to undergo ring-opening degradation. The UV/PDS process was more stable and performed better than the UV/H2O2 for the ribavirin degradation when the same molar oxidant dosage was applied. HO• plays an extremely important role in the degradation of ribavirin by UV/PDS. The reason for this phenomenon is the combination of the higher yield of HO• produced in the UV/PDS process and the faster reaction rate of ribavirin with HO•. The UV/H2O2 process is more sensitive to pH than UV/PDS. Alkaline condition can significantly inhibit the ribavirin degradation. The effects of natural organic matter (NOM) and ribavirin concentration were also compared. Eventually, the toxicity prediction of the product showed that the opening-ring products were more toxic than the parent compound.

17.
Sci Total Environ ; 858(Pt 3): 160101, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370799

RESUMO

Aromatic disinfection by-products (DBPs), which are generally more toxic than aliphatic DBPs, have attracted increasing attention. The toxicity of 13 typical halophenols on Scenedesmus obliquus was experimentally investigated, and the ozonation mechanism and kinetics of representative halophenols were further studied by quantum chemical calculations. The results showed that the EC50 values of halophenols ranged from 2.74 to 60.23 mg/L, and their toxicity ranked as follows: di-halogenated phenols > mono-halogenated phenols, mixed halogen-substituted phenols > single halogen-substituted phenols, and iodophenols > bromophenols > chlorophenols. The toxicity of halophenols was well described by the electronegativity index (ω) as lg(EC50)-1 = 6.228ω - 3.869, indicating halophenols capturing electrons as their potential toxicity mechanism. The reactions of O3 with halophenolate anions were dominated by three mechanisms: 1,3-dipolar cycloaddition, oxygen addition, and single electron transfer. The kinetic calculation indicated that O3 oxidized aqueous halophenols by reacting with halophenolate anions with the reaction rate constants as high as (0.91-3.47) × 1010 M-1 s-1. The number of halogen substituents affected the kO3, cal values of halophenolate anions, which are in the order of 2,4-dihalophenolate anions >4-halophenolate anions > 2,4,6-trihalophenolate anions. During the ozonation of 2,4,6-tribromophenol (246TBP), the toxic products (dimers and brominated benzoquinones) could be synergistically degraded by O3 and HO•. Thus, ozonation is feasible as a strategy to degrade aromatic DBPs.


Assuntos
Ozônio , Pesquisa
18.
Environ Pollut ; 324: 121395, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871750

RESUMO

Organophosphate esters (OPEs) are widely detected in the atmosphere. However, the atmospheric oxidative degradation mechanism of OPEs has not been closely examined. This work took density functional theory (DFT) to investigate the tropospheric ozonolysis of organophosphates, represented by diphenyl phosphate (DPhP), including adsorption mechanisms on the surface of titanium dioxide (TiO2) mineral aerosols and oxidation reaction of hydroxyl groups (·OH) after photolysis. Besides, the reaction mechanism, reaction kinetics, adsorption mechanism, and ecotoxicity evaluation of the transformation products were also studied. At 298 K, the total reaction rate constants kO3, kOH, kTiO2-O3, and kTiO2-OH are 5.72 × 10-15 cm3 molecule-1 s-1, 1.68 × 10-13 cm3 molecule-1 s-1, 1.91 × 10-23 cm3 molecule-1 s-1, and 2.30 × 10-10 cm3 molecule-1 s-1. The atmospheric lifetime of DPhP ozonolysis in the near-surface troposphere is 4 min, much lower than that of hydroxyl radicals (·OH). Besides, the lower the altitude is, the stronger the oxidation is. The TiO2 clusters carry DPhP promoting ·OH oxidation but inhibiting ozonolysis of DPhP. Finally, the main transformation products of this process are glyoxal, malealdehyde, aromatic aldehydes, etc., which are still ecotoxic. The findings shed new light on the atmospheric governance of OPEs.


Assuntos
Retardadores de Chama , Ozônio , Fosfatos , Ésteres , Organofosfatos , Atmosfera
19.
Chemosphere ; 345: 140457, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839744

RESUMO

In this work, sixteen typical chlorinated and brominated aromatic disinfection by-products (DBPs) were selected as examples to investigate their different degradation mechanisms initiated by HO• and SO4•-. Addition reactions were the main mode of degradation of DBPs by HO•, while SO4•- dominated H-abstraction reactions and single electron transfer reactions. Chlorinated compounds had higher reactivity than brominated compounds. Furthermore, substituents with stronger electron-donating effects promoted the electrophilic reaction of DBPs with the two radicals. In addition, we developed a model based on the chemical properties LUMO, fmax-, and hardness for predicting the average reaction energy barriers for the initial reactions of DBPs with HO• and SO4•-. The model had good predictive performance for the difficulty of degradation of different DPBs by HO• and SO4•-, with R2 values of 0.85 and 0.87, respectively. Through the degradation efficiency simulation, we found that longer reaction times, higher oxidant concentrations and lower pollutant concentrations were more favorable for the removal of DBPs. The UV/PDS process showed better degradation of DBPs than the UV/H2O2 process. In addition, most degradation products of DBPs exhibited less toxicity to aquatic organisms than their parent compounds. This study provided theoretical guidance for the degradation and removal of other aromatic DBPs at the molecular level.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Desinfecção , Poluentes Químicos da Água/análise , Raios Ultravioleta , Cinética , Halogenação , Cloro/química , Oxirredução
20.
J Hazard Mater ; 443(Pt B): 130265, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327847

RESUMO

Herbicide residues in the environment threaten high-quality agriculture and human health. Consequently, in situ remediation of herbicide contamination is vital. We synthesized a novel self-catalyzed nanozyme, ultrasmall (2-3 nm) copper peroxide nanodots modified by citric acid (CP@CA) for this purpose, which can break down into H2O2 and Cu2+ in water or soil. Ubiquitous glutathione reduces Cu2+ into Cu+, which promotes the decomposition of H2O2 into •OH through a Fenton-like reaction under mild acid conditions created by the presence of citric acid. The generated •OH efficiently degrade nicosulfuron in water and soil, and the maximum degradation efficiency could be achieved at 97.58% in water at 56 min. The possible degradation mechanisms of nicosulfuron were proposed through the 25 intermediates detected. The overall ecotoxicity of the nicosulfuron system was significantly reduced after CP@CA treatment. Furthermore, CP@CA had little impact on active components of soil bacterial community. Moreover, CP@CA nanozyme could effectively remove seven other sulfonylurea herbicides from the water. In this paper, a high-efficiency method for herbicide degradation was proposed, which provides a new reference for the in situ remediation of herbicide pollution.


Assuntos
Herbicidas , Humanos , Herbicidas/metabolismo , Cobre/toxicidade , Ácido Cítrico , Peróxido de Hidrogênio/metabolismo , Peróxidos , Compostos de Sulfonilureia/toxicidade , Compostos de Sulfonilureia/metabolismo , Solo/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA