RESUMO
Mixed matrix membranes (MMMs) are one of the most promising solutions for energy-efficient gas separation. However, conventional MMM synthesis methods inevitably lead to poor filler-polymer interfacial compatibility, filler agglomeration, and limited loading. Herein, inspired by symbiotic relationships in nature, we designed a universal bottom-up method for in situ nanosized metal organic framework (MOF) assembly within polymer matrices. Consequently, our method eliminating the traditional postsynthetic step significantly enhanced MOF dispersion, interfacial compatibility, and loading to an unprecedented 67.2 wt % in synthesized MMMs. Utilizing experimental techniques and complementary density functional theory (DFT) simulation, we validated that these enhancements synergistically ameliorated CO2 solubility, which was significantly different from other works where MOF typically promoted gas diffusion. Our approach simultaneously improves CO2 permeability and selectivity, and superior carbon capture performance is maintained even during long-term tests; the mechanical strength is retained even with ultrahigh MOF loadings. This symbiosis-inspired de novo strategy can potentially pave the way for next-generation MMMs that can fully exploit the unique characteristics of both MOFs and matrices.
RESUMO
An interfacial solar steam generation evaporator for seawater desalination has attracted extensive interest in recent years. Nevertheless, challenges still remain in relatively low evaporation rate, unsatisfactory energy conversion efficiency, and salt accumulation. Herein, we have demonstrated a biomimetic bilayer composite aerogel consisting of bottom hydrophilic and vertically aligned EVOH channels and an upper hydrophobic conical Fe3O4 array. Thanks to the design merits, the 3D Fe3O4/V-EVOH evaporator exhibits a high evaporation rate of â¼2.446 kg m-2 h-1 and an impressive solar energy conversion efficiency of â¼165.5% under 1 sun illumination, which is superior to those of state-of-the-art evaporators reported so far. Moreover, the asymmetrical wettability not only allows the evaporator to self-float on the water but also facilitates the salt ion diffusion in the channels; thus, the evaporator shows no salt crystals on its surface and only a 6% decrease in evaporation performance even after the salt concentration increases from 0 to 10.0 wt %.
RESUMO
In recent years, live-cell-based drug delivery systems have gained considerable attention. However, shear stress, which accompanies blood flow, may cause cell death and weaken the delivery performance. In this study, we found that reducing cholesterol in macrophage plasma membranes enhanced their tumor targeting ability by more than 2-fold. Our study demonstrates that the reduced cholesterol level deactivated the mammalian target of rapamycin (mTOR) and consequently promoted the nuclear translocation of transcription factor EB (TFEB), which in turn enhanced the expression of superoxide dismutase (SOD) to reduce reactive oxygen species (ROS) induced by shear stress. A proof-of-concept system using low cholesterol macrophages attached to MXene (e.g., l-RX) was fabricated. In a melanoma mouse model, l-RX and laser irradiation treatments eliminated tumors with no recurrences observed in mice. Therefore, cholesterol reduction is a simple and effective way to enhance the targeting performance of macrophage-based drug delivery systems.
Assuntos
Macrófagos , Superóxido Dismutase , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Sistemas de Liberação de Medicamentos , Colesterol/metabolismo , Mamíferos/metabolismoRESUMO
BACKGROUND: This study aimed to isolate the rumen-derived bacteria with the ability to degrade free gossypol (FG), and to evaluate the probiotic potential in vitro for ensuring safe utilization. METHODS: The strains were anaerobically isolated from fresh rumen fluid of sheep with long-term fed cottonseed meal (CSM) with the screening agar medium containing gossypol as the sole carbon source. Afterwards, the isolated strain incubated with CSM was subjected to the determination of the FG degradation and in vitro evaluation of probiotic characteristics. RESULTS: The target strain labeled Lact. mucosae LLK-XR1 [Accession number: OQ652016.1] was obtained, and its growth on MRS Liquid medium exhibited degradation efficiency of FG up to 69.5% which was significantly greater than its growth on Man-Rogosa-Sharpe medium with glucose free for 24 h (p < 0.01). Meanwhile, LLK-XR1 showed 40.652% degradation rate of FG for unautoclaved, non-pulverized, and no additional nutrients supplementation CSM. Furthermore, LLK-XR1 presented good survivability at pH 3.0 (above 88.6%), and 0.3% bile (78.5%). LLK-XR1 showed sensitivity to broad-spectrum antibiotics except Sulfamethoxazole, Ciprofloxacin and Gentamycin and significantly inhibited E. coli CICC 10,899, Staph. aureus CICC 21,600, and Salmonella. Typhimurium CICC 21,483. LLK-XR1 demonstrated good cell surface hydrophobicity and auto-aggregation ability. CONCLUSIONS: Taken together, this study for the first time noted that rumen-originated Lact. mucosae LLK-XR1 with probiotic properties exhibited substantial FG degradation capacity when it was applied to the solid-state fermentation of CSM.
Assuntos
Gossipol , Probióticos , Humanos , Masculino , Animais , Ovinos , Óleo de Sementes de Algodão , Escherichia coli , Fermentação , RúmenRESUMO
UV-induced DNA damage, a major risk factor for skin cancers, is primarily repaired by nucleotide excision repair (NER). UV radiation resistance-associated gene (UVRAG) is a tumor suppressor involved in autophagy. It was initially isolated as a cDNA partially complementing UV sensitivity in xeroderma pigmentosum (XP), but this was not explored further. Here we show that UVRAG plays an integral role in UV-induced DNA damage repair. It localizes to photolesions and associates with DDB1 to promote the assembly and activity of the DDB2-DDB1-Cul4A-Roc1 (CRL4(DDB2)) ubiquitin ligase complex, leading to efficient XPC recruitment and global genomic NER. UVRAG depletion decreased substrate handover to XPC and conferred UV-damage hypersensitivity. We confirmed the importance of UVRAG for UV-damage tolerance using a Drosophila model. Furthermore, increased UV-signature mutations in melanoma correlate with reduced expression of UVRAG. Our results identify UVRAG as a regulator of CRL4(DDB2)-mediated NER and suggest that its expression levels may influence melanoma predisposition.
Assuntos
Autofagia/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Melanoma Experimental/enzimologia , Neoplasias Cutâneas/enzimologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patologia , Proteólise , Interferência de RNA , Retina/enzimologia , Retina/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
When chloroaluminate (AlCl4-) serves as the electrolyte, aluminum nitride (AlN) has shown promise as a cathode material in aluminum ion batteries. However, there is currently a lack of research on the mechanisms of charge transfer and cluster intercalation between AlCl4 and AlN cathode materials. Herein, first-principles calculations are employed to investigate the intercalation mechanism of AlCl4 within the AlN cathode. By calculating the formation energies of stage-1-5 AlN-AlCl4 intercalation compounds with the insertion of individual AlCl4 cluster, we found that the structure of the stage-4 intercalation compounds exhibits the highest stability, suggesting that when the clusters begin to intercalate, it is important to start with the formation of the stage-4 intercalation compounds. In the subsequent phases of the charging process (stages 1 and 2), the stabilized structure with four inserted clusters demonstrates two characteristics: the coexistence of standing and lying clusters and the insertion of two standing clusters in an upside-down doubly stacked configuration, which further improve the spatial utilization while maintaining the structural stability. In addition, we infer that a phenomenon of coexisting intercalation compounds with mixed stages will occur in the course of the charging and discharging processes. More importantly, the diffusion barrier of AlCl4 in AlN-AlCl4 intercalation compounds decreases with the reduction of stage number, ensuring the rate performance of batteries. Therefore, we expect that our work will contribute to comprehend the intercalation mechanism of AlCl4 into the AlN cathode materials of aluminum ion batteries, providing guidance for related experimental work.
RESUMO
Lead is a widespread environmental pollutant with serious adverse effects on human health, but the mechanism underlying its toxicity remains elusive. This study aimed to investigate the role of miR-584-5p / Ykt6 axis in the toxic effect of lead on HK-2 cells and the related mechanism. Our data suggested that lead exposure caused significant cytotoxicity, DNA and chromosome damage to HK-2 cells. Mechanistically, lead exposure down-regulated miR-584-5p and up-regulated Ykt6 expression, consequently, autophagosomal number and autophagic flux increased, lysosomal number and activity decreased, exosomal secretion increased. Interestingly, when miR-584-5p level was enhanced with mimic, autophagosomal number and autophagic flux decreased, lysosomal number and activity increased, ultimately, exosomal secretion was down-regulated, which resulted in significant aggravated toxic effects of lead. Further, directly blocking exosomal secretion with inhibitor GW4869 also resulted in exacerbated toxic effects of lead. Herein, we conclude that miR-584-5p / Ykt6 - mediated autophagy - lysosome - exosome pathway may be a critical route affecting the toxic effects of lead on HK-2 cells. We provide a novel insight into the mechanism underlying the toxicity of lead on human cells.
Assuntos
Autofagia , Exossomos , Chumbo , Lisossomos , MicroRNAs , Humanos , Autofagia/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Lisossomos/efeitos dos fármacos , Linhagem Celular , Chumbo/toxicidade , Poluentes Ambientais/toxicidade , ATPases Vacuolares Próton-Translocadoras/genética , Dano ao DNARESUMO
Mesenchymal stem cell - originated exosomes (MSC-exo) are promising non-cellular treatment agents for various diseases. The present study aimed to explore whether human umbilical cord MSC - originated exosomes (HUC-MSC-exo) have the function of protecting human cells (16HBE) against the damage caused by HQ and the related mechanism. HUC-MSC-exo was isolated with differential gradient ultracentrifugation method and characterized by using transmission electron microscope (TEM). 16HBE cells were used as the tool cells and co-cultured with HUC-MSC-exo. Confocal laser scanning microscope was employed to confirm the ingestion of HUC-MSC-exo by 16HBE. Cell proliferation, migration, oxidative stress, DNA and chromosome damages of 16HBE were analyzed under HQ stress, and the role of miR-221/PTEN axis was investigated. Our data showed that under HQ stress, different groups of cells exhibited significantly decreased proliferation and migration abilities, and significant oxidative stress, DNA and chromosome damage effects. HUC-MSC-exo could alleviate the cytotoxic, oxidative stress and genotoxic damage effects of HQ on 16HBE cells. Mechanistically, HQ exposure up-regulated the level of miR-221 and down-regulated PTEN, while HUC-MSC-exo could significantly reduce the level of miR-221 and promote PTEN expression, which was involved in alleviating the toxic effects of HQ on 16HBE cells. Our data indicates that HUC-MSC-exo can alleviate the oxidative stress, cytotoxic and genotoxic effects of HQ on 16HBE cells via miR-221/PTEN pathway, and it may be a promising agent for protecting against the toxicity of HQ.
Assuntos
Proliferação de Células , Dano ao DNA , Exossomos , Hidroquinonas , Células-Tronco Mesenquimais , MicroRNAs , Estresse Oxidativo , PTEN Fosfo-Hidrolase , Humanos , PTEN Fosfo-Hidrolase/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hidroquinonas/toxicidade , Linhagem Celular , Cordão Umbilical/citologia , Movimento Celular/efeitos dos fármacosRESUMO
Ovarian cancer (OC), known for its pronounced heterogeneity, has long evaded a unified classification system despite extensive research efforts. This study integrated five distinct multi-omics datasets from eight multicentric cohorts, applying a combination of ten clustering algorithms and ninety-nine machine learning models. This methodology has enabled us to refine the molecular subtyping of OC, leading to the development of a novel Consensus Machine Learning-driven Signature (CMLS). Our analysis delineated two prognostically significant cancer subtypes (CS), each marked by unique genetic and immunological signatures. Notably, CS1 is associated with an adverse prognosis. Leveraging a subtype classifier, we identified five key genes (CTHRC1, SPEF1, SCGB3A1, FOXJ1, and C1orf194) instrumental in constructing the CMLS. Patients classified within the high CMLS group exhibited a poorer prognosis and were characterized by a "cold tumor" phenotype, indicative of an immunosuppressive microenvironment rich in MDSCs, CAFs, and Tregs. Intriguingly, this group also presented higher levels of tumor mutation burden (TMB) and tumor neoantigen burden (TNB), factors that correlated with a more favorable response to immunotherapy compared to their low CMLS counterparts. In contrast, the low CMLS group, despite also displaying a "cold tumor" phenotype, showed a favorable prognosis and a heightened responsiveness to chemotherapy. This study's findings underscore the potential of targeting immune-suppressive cells, particularly in patients with high CMLS, as a strategic approach to enhance OC prognosis. Furthermore, the redefined molecular subtypes and risk stratification, achieved through sophisticated multi-omics analysis, provide a framework for the selection of therapeutic agents.
RESUMO
This study examines the effects of comprehensive nursing care on hand-foot syndrome (HFS) in breast cancer patients treated with capecitabine. A retrospective analysis was conducted on 71 patients, divided into a study group receiving comprehensive care and a control group receiving conventional care. Results showed that the study group experienced significant improvements in skin symptoms, self-efficacy, quality of life, and lower anxiety and depression levels compared to the control group. Additionally, patients who were compliant with medications were notably better in the study group. Comprehensive care effectively alleviates the symptoms of hand-foot syndrome in breast cancer patients treated with capecitabine and enhances patient well-being.
Cette étude examine les effets des soins infirmiers complets sur le syndrome main-pied (SMP) chez les patientes atteintes de cancer du sein traitées par capécitabine. Une analyse rétrospective a été réalisée sur 71 patientes, divisées en un groupe d'étude recevant des soins complets et un groupe témoin recevant des soins conventionnels. Les résultats ont montré que le groupe d'étude a connu des améliorations significatives des symptômes cutanés, de l'auto-efficacité, de la qualité de vie, ainsi qu'une réduction des niveaux d'anxiété et de dépression par rapport au groupe témoin. De plus, les patientes adhérant au traitement médicamenteux étaient notablement meilleures dans le groupe d'étude. Les soins complets atténuent efficacement les symptômes du syndrome main-pied chez les patientes atteintes de cancer du sein traitées par capécitabine et améliorent leur bien-être.
Assuntos
Antimetabólitos Antineoplásicos , Neoplasias da Mama , Capecitabina , Síndrome Mão-Pé , Qualidade de Vida , Humanos , Capecitabina/efeitos adversos , Capecitabina/uso terapêutico , Síndrome Mão-Pé/etiologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/uso terapêutico , Adulto , Resultado do TratamentoRESUMO
Pathological scarring resulting from traumas and wounds, such as hypertrophic scars and keloids, pose significant aesthetic, functional and psychological challenges. This study provides a comprehensive transcriptomic analysis of these conditions, aiming to illuminate underlying molecular mechanisms and potential therapeutic targets. We employed a co-expression and module analysis tool to identify significant gene clusters associated with distinct pathophysiological processes and mechanisms, notably lipid metabolism, sebum production, cellular energy metabolism and skin barrier function. This examination yielded critical insights into several skin conditions including folliculitis, skin fibrosis, fibrosarcoma and congenital ichthyosis. Particular attention was paid to Module Cluster (MCluster) 3, encompassing genes like BLK, TRPV1 and GABRD, all displaying high expression and potential implications in immune modulation. Preliminary immunohistochemistry validation supported these findings, showing elevated expression of these genes in non-fibrotic samples rich in immune activity. The complex interplay of different cell types in scar formation, such as fibroblasts, myofibroblasts, keratinocytes and mast cells, was also explored, revealing promising therapeutic strategies. This study underscores the promise of targeted gene therapy for pathological scars, paving the way for more personalised therapeutic approaches. The results necessitate further research to fully ascertain the roles of these identified genes and pathways in skin disease pathogenesis and potential therapeutics. Nonetheless, our work forms a strong foundation for a new era of personalised medicine for patients suffering from pathological scarring.
Assuntos
Cicatriz Hipertrófica , Queloide , Humanos , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/terapia , Cicatriz Hipertrófica/metabolismo , Queloide/genética , Queloide/terapia , Queratinócitos/metabolismo , Fibroblastos/metabolismo , Miofibroblastos/metabolismoRESUMO
Adolescence is a pivotal point in the life course, characterised by transformative physical, cognitive, and emotional growth, an openness to change, and a drive to reshape the social environment. It offers unique opportunities to adopt changes in diet and physical activity that can persist into later life. Yet pre-existing nutritional problems, including micronutrient deficiencies, food insecurity, and poor-quality diets, persist at the same time as adolescents face the rapid emergence of an obesity epidemic. Adolescent growth and nutrition has been largely overlooked in intervention and policy research. Most intervention studies have emphasised micronutrient supplementation, with few taking into account the multiple drivers of adolescent diets. This Series paper highlights that effective interventions and policies will need to cut across sectors; be supported by multifaceted and multilevel policy; and extend across education, health, food systems, social protection, and digital media. Better data standardisation and systems will be essential in coordinating and monitoring these responses. In a context of shifts in planetary ecosystems and commercial drivers, resilient food systems will need to both ensure access to healthy and affordable foods and provide the infrastructure and incentives for continuing physical activity. Intergenerational partnerships with young people will be essential in bringing about transformative change and ensuring that food policies reflect their needs and aspirations.
Assuntos
Desenvolvimento do Adolescente/fisiologia , Saúde do Adolescente , Dieta Saudável , Promoção da Saúde/organização & administração , Política Nutricional , Adolescente , Insegurança Alimentar , Saúde Global , Promoção da Saúde/métodos , Humanos , Desnutrição/epidemiologia , Desnutrição/fisiopatologia , Desnutrição/prevenção & controle , Micronutrientes/deficiência , Estado Nutricional/fisiologia , Sobrepeso/epidemiologia , Sobrepeso/fisiopatologia , Sobrepeso/prevenção & controleRESUMO
BACKGROUND: Researches have manifested that the disorder of iron metabolism is participated in Gastric cancer (GC), but whether iron metabolism-relevant genes (IMRGs) is related to the survival outcome of GC remain unknown. METHODS: Eleven tumor as well as nine adjacent normal tissues from GC patients were underwent mRNA sequencing, and the The Cancer Genome Atlas Stomach Cancer (TCGA-STAD) datasets were acquired from the TCGA database. Cox analyses and least absolute shrinkage and selection operator (LASSO) regression were applied to build a IMRGs signature. The relationship between signature genes and the infiltration profiling of 24 immune cells were investigated using single-sample GSEA (ssGSEA). Meanwhile, the potential biological significance, genes that act synergistically with signature genes, and the upstream regulatory targets were predicted. Finally, the abundance of the signature genes were measured via the quantitative real-time PCR (qRT-PCR). RESULTS: A IMRGs signature was constructed according to the expression and corresponding coefficient of DOHH, P4HA3 and MMP1 (The Schoenfeld individual test showed risk score was not significant with P values = 0.83). The prognostic outcome of patients in the high-risk group was terrible (p < 0.05). Receiver operating characteristic (ROC) curves confirmed that the IMRGs signature presented good efficiency for predicting GC prognosis (AUC > 0.6). The nomogram was performed well for clinical utilize (C-index = 0.60), and the MMP1 expression significantly increased in the cohorts at age > 60 and Stage II-IV (p < 0.05). The positive correlation of P4HA3 and MMP1 expression as well as the negative correlation of DOHH expression with risk score (p < 0.0001) and worse prognosis (p < 0.05) were detected as well. Furthermore, 11 differential immune cells were associated with these signature genes (most p < 0.01). Finally, qRT-PCR revealed that the abundance of DOHH, P4HA3 and MMP1 were high in tumor cases, indicating the complex mechanism between the high expression of DOHH as a protective factor and the high expression of P4HA3 and MMP1 as the risk factors in the development of GC. CONCLUSION: An iron metabolism-related signature was constructed and has significant values for foretelling the OS of GC.
Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Metaloproteinase 1 da Matriz , Prognóstico , Análise de Sequência de RNA , Ferro , Pró-Colágeno-Prolina DioxigenaseRESUMO
Developing cathode materials with high specific capability and excellent electrochemical performance is crucial for the advancement of aluminum-ion batteries, which leverage the high theoretical energy density of aluminum metal anodes. In this paper, we investigated the interaction ofAlCl4cluster and Al atom with AlN (-100) and (001) monolayer using density functional theory to assess the applicability of AlN as cathode material for aluminum-ion batteries. The results show that the AlN (001) monolayer is the most effective for adsorbing and accommodatingAlCl4clusters. Moreover, the AlN (001) monolayer maintains metallic behavior at different concentrations of theAlCl4cluster, laying the foundation for its battery application. The theoretical storage capacity of theAlCl4cluster is 105.93mAhg-1,which exceeds that of the Al/graphite battery. The formation energy ofAlCl4-intercalated AlN compounds is -2.74 eV, and the intercalant gallery height is moderate. Furthermore, the diffusion barrier of 0.19 eV forAlCl4cluster between the AlN (001) monolayer provides high rate capability. The results indicate that AlN monolayer may be a potential cathode material for aluminum-ion batteries.
RESUMO
DNA glycosylase is responsible for repairing DNA damage to maintain the genome stability and integrity. However, how glycosylase can efficiently and accurately recognize DNA lesions across the enormous DNA genome remains elusive. It has been hypothesized that glycosylase translocates along the DNA by alternating between a fast but low-accuracy diffusion mode and a slow but high-accuracy mode when searching for DNA lesions. However, the slow mode has not been successfully characterized due to the limitation in the spatial and temporal resolutions of current experimental techniques. Using a newly developed scanning fluorescence resonance energy transfer (FRET)-fluorescence correlation spectroscopy (FCS) platform, we were able to observe both slow and fast modes of glycosylase AlkD translocating on double-stranded DNA (dsDNA), reaching the temporal resolution of microsecond and spatial resolution of subnanometer. The underlying molecular mechanism of the slow mode was further elucidated by Markov state model built from extensive all-atom molecular dynamics simulations. We found that in the slow mode, AlkD follows an asymmetric diffusion pathway, i.e., rotation followed by translation. Furthermore, the essential role of Y27 in AlkD diffusion dynamics was identified both experimentally and computationally. Our results provided mechanistic insights on how conformational dynamics of AlkD-dsDNA complex coordinate different diffusion modes to accomplish the search for DNA lesions with high efficiency and accuracy. We anticipate that the mechanism adopted by AlkD to search for DNA lesions could be a general one utilized by other glycosylases and DNA binding proteins.
Assuntos
Bacillus cereus/genética , Proteínas de Bactérias/química , DNA Glicosilases/química , Bacillus cereus/química , Bacillus cereus/enzimologia , Bacillus cereus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Cadeias de Markov , Simulação de Dinâmica Molecular , Espectrometria de Fluorescência , Especificidade por SubstratoRESUMO
Bisphenol A (BPA), one of the typical environmental endocrine disruptors (EEDs), can promote the proliferation and migration of cancer cells, but the mechanism of which remains largely unclear. Exosome secretion plays an important role in the stress response of cells to environmental stimuli. This study was designed to explore whether exosome secretion was involved in the toxic effect of BPA on the proliferation and migration of MCF-7 cells, and the related mechanism. Our data shows that the IC50 value of MCF-7 exposure to BPA was about 65.82 µM. The exposure of MCF-7 to 10 µM BPA resulted in a decreased miR-26b expression and the activation of miR-26b/Rab-31 pathway, consequently, the number and activity of lysosomes decreased, the secretion of exosomes increased, cell proliferation and migration were enhanced obviously. Interestingly, miR-26b mimic up-regulated the number and activity of lysosomes via miR-26b/miR-31 pathway, exosome secretion was down-regulated, cell proliferation and migration decreased. Further, when GW4869 was used to directly inhibit the exosome secretion of MCF-7 treated with BPA, their proliferation and migration were down-regulated. Herein, we concluded that the stimulating effect of BPA on the proliferation and migration of MCF-7 cells was associated with the lysosome - related exosome secretion via miR-26b / Rab31 pathway.
Assuntos
Exossomos , MicroRNAs , Humanos , Células MCF-7 , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/fisiologia , Lisossomos/metabolismo , Linhagem Celular Tumoral , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismoRESUMO
AINTEGUMENTA-LIKE (AIL) genes play a key role in various growth and developmental processes in plants. Thus far, the genome-wide identification of AIL genes has been reported for some plant species. However, genome-wide identification of AIL genes has not been conducted in apple (Malus domestica Borkh.). The current study focused on a comprehensive analysis of the AIL genes in the apple genome (i.e., MdAIL genes). In total, 27 MdAIL genes in the apple genome were identified and then divided into four groups according to phylogenetic analysis. The chromosomal locations, gene and protein structures, and physicochemical characteristics of MdAIL genes were analyzed. Synteny analysis revealed that segmental duplication events played a major role in the expansion of the AIL gene family in apple. The analysis of cis-regulatory elements in MdAIL promoter regions indicated that most of the MdAIL genes are involved in embryo development and seed germination. Moreover, the analysis of tissue-specific expression patterns and transcript levels in adventitious bud regeneration indicated that MdAIL genes play an extensive regulatory role in apple growth and development, especially in the regulation of germination and adventitious bud regeneration from in vitro leaves of apple. In conclusion, this is the first genome-wide analysis of the AIL genes in apple. The current results may help in better understanding the evolution and function of MdAIL genes and thus facilitate further research on plant growth and development.
Assuntos
Malus , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Malus/genética , Malus/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Municipal solid waste could potentially transmit human pathogens during the collection, transport, handling, and disposal of waste. Workers and residents living in the vicinity of municipal solid waste collection or disposal sites are particularly susceptible, especially unprotected workers and waste pickers. Recent evidence suggests that municipal solid waste-mediated transmission can spread the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans. Such risks, however, have received little attention from public health authorities so far and may present an under-investigated transmission route for SARS-CoV-2 and other infectious agents during pandemics. In this review, we provide a retrospective analysis of the challenges, practices, and policies on municipal solid waste management during the current pandemic, and scrutinize the recent case reports on the municipal solid waste-mediated transmission of the coronavirus disease 2019 (COVID-19). We found abrupt changes in quantity and composition of municipal solid wastes during the COVID-19. We detail pathways of exposure to SARS-CoV-2 and other pathogens carried on municipal solid wastes. We disclose evidence of pathogenic transmission by municipal solid waste to humans and animals. Assessments of current policies, gaps, and voluntary actions taken on municipal solid waste handling and disposal in the current pandemic are presented. We propose risk mitigation strategies and research priorities to alleviate the risk for humans and vectors exposed to municipal solid wastes.
RESUMO
Aquaporins (AQPs) play important roles in plant growth, development and tolerance to environmental stresses. To understand the role of AQPs in the mangrove plant Kandelia obovata, which has the ability to acquire water from seawater, we identified 34 AQPs in the K. obovata genome and analysed their structural features. Phylogenetic analysis revealed that KoAQPs are homologous to AQPs of Populus and Arabidopsis, which are evolutionarily conserved. The key amino acid residues were used to assess water-transport ability. Analysis of cis-acting elements in the promoters indicated that KoAQPs may be stress- and hormone-responsive. Subcellular localization of KoAQPs in yeast showed most KoAQPs function in the membrane system. That transgenic yeast with increased cell volume showed that some KoAQPs have significant water-transport activity, and the substrate sensitivity assay indicates that some KoAQPs can transport H2 O2 . The transcriptome data were used to analyze the expression patterns of KoAQPs in different tissues and developing fruits of K. obovata. In addition, real-time quantitative PCR analyses combined transcriptome data showed that KoAQPs have complex responses to environmental factors, including salinity, flooding and cold. Collectively, the transport of water and solutes by KoAQPs contributed to the adaptation of K. obovata to the coastal intertidal environment.
Assuntos
Aquaporinas , Rhizophoraceae , Aquaporinas/genética , Aquaporinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizophoraceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Água/metabolismoRESUMO
Optical analog computing operates on the amplitude, phase, polarization, and frequency distributions of the electromagnetic field through the interaction of light and matter. The differentiation operation is widely used in all-optical image processing technology, such as edge detection. Here, we propose a concise way to observe transparent particles, incorporating the optical differential operation that occurs on a single particle. The particle's scattering and cross-polarization components combine into our differentiator. We achieve high-contrast optical images of transparent liquid crystal molecules. The visualization of aleurone grains (the structures that store protein particles in plant cells) in maize seed was experimentally demonstrated with a broadband incoherent light source. Avoiding the interference of stains, our designed method provides the possibility to observe protein particles directly in complex biological tissues.