Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 94, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326748

RESUMO

BACKGROUND: Auxin response factors (ARFs) are critical transcription factors that mediate the auxin signaling pathway and are essential for regulating plant growth. However, there is a lack of understanding regarding the ARF gene family in Liriodendron chinense, a vital species in landscaping and economics. Thus, further research is needed to explore the roles of ARFs in L. chinense and their potential applications in plant development. RESULT: In this study, we have identified 20 LcARF genes that belong to three subfamilies in the genome of L. chinense. The analysis of their conserved domains, gene structure, and phylogeny suggests that LcARFs may be evolutionarily conserved and functionally similar to other plant ARFs. The expression of LcARFs varies in different tissues. Additionally, they are also involved in different developmental stages of somatic embryogenesis. Overexpression of LcARF1, LcARF2a, and LcARF5 led to increased activity within callus. Additionally, our promoter-GFP fusion study indicated that LcARF1 may play a role in embryogenesis. Overall, this study provides insights into the functions of LcARFs in plant development and embryogenesis, which could facilitate the improvement of somatic embryogenesis in L. chinense. CONCLUSION: The research findings presented in this study shed light on the regulatory roles of LcARFs in somatic embryogenesis in L. chinense and may aid in accelerating the breeding process of this tree species. By identifying the specific LcARFs involved in different stages of somatic embryogenesis, this study provides a basis for developing targeted breeding strategies aimed at optimizing somatic embryogenesis in L. chinense, which holds great potential for improving the growth and productivity of this economically important species.


Assuntos
Liriodendron , Liriodendron/genética , Melhoramento Vegetal , Fatores de Transcrição/genética , Ácidos Indolacéticos/metabolismo , Genômica , Regulação da Expressão Gênica de Plantas , Técnicas de Embriogênese Somática de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plants (Basel) ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256726

RESUMO

The F-box gene family is one of the largest gene families in plants, and it plays a crucial role in regulating plant development, reproduction, cellular protein degradation, and response to biotic and abiotic stresses. Despite their significance, a comprehensive analysis of the F-box gene family in Liriodendron chinense and other magnoliaceae species has not been reported. In this study, we report for the first time the identification of 144 full-length F-box genes in L. chinense. Based on specific domains and phylogenetic analyses, these genes were divided into 10 distinct subfamilies. We further analyzed their gene structure, conserved domain and chromosome distribution, genome-wide replication events, and collinearity. Additionally, based on GO analysis, we found that F-box genes exhibit functional specificity, with a significant proportion of them being involved in protein binding (GO:0005515), suggesting that F-box genes may play an important role in gene regulation in L. chinense. Transcriptome data and q-PCR results also showed that F-box genes are involved in the development of multiple tissues in L. chinense, regulate the somatic embryogenesis of Liriodendron hybrids, and play a pivotal role in abiotic stress. Altogether, these findings provide a foundation for understanding the biological function of F-box genes in L. chinense and other plant species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA