Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; 204: 107201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704108

RESUMO

Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like ß-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.


Assuntos
Estrogênios , Terapia por Exercício , Transtornos Mentais , Animais , Humanos , Estrogênios/metabolismo , Exercício Físico/fisiologia , Transtornos Mentais/metabolismo , Transtornos Mentais/terapia , Receptores de Estrogênio/metabolismo , Transdução de Sinais
2.
J Am Chem Soc ; 141(2): 1141-1149, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30543394

RESUMO

The simple binary compound SnSe has been reported as a robust thermoelectric material for energy conversion by showing strong anharmonicity and multiple electronic valence bands. Herein, we report a record-high average ZT value of ∼1.6 at 300-793 K with maximum ZT values ranging from 0.8 at 300 K to 2.1 at 793 K in p-type SnSe crystals. This remarkable thermoelectric performance arises from the enhanced power factor and lowered lattice thermal conductivity through crystal structure modification via Te alloying. Our results elucidate that Te alloying increases the carrier mobility by making the bond lengths more nearly equal and sharpening the valence bands; meanwhile, the Seebeck coefficient remains large due to multiple valence bands. As a result, a record-high power factor of ∼55 µW cm-1 K-2 at 300 K is achieved. Additionally, Te alloying promotes Sn atom displacements, thus leading to a lower lattice thermal conductivity. Our conclusions are well supported by electron localization function calculations, the Callaway model, and structural characterization via aberration-corrected scanning transmission electron microscopy. Our approach of modifying crystal structures could also be applied in other low-symmetry thermoelectric materials and represents a new strategy to enhance thermoelectric performance.

3.
Sci Rep ; 12(1): 10448, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729335

RESUMO

Flexible conductive films have good deformability and conductivity, and are expected to be used in flexible electronic devices. In this paper, four kinds of flexible conductive films were successfully prepared by compounding nano-sized metal (Ni, Cu, Au or AuCu alloy) particles to CNT surface and then dispersing to polydimethylsiloxane matrix. Experiment results show that the conductivity of these prepared films are almost two orders of magnitude higher than that of CNT/polydimethylsiloxane films with the same CNT loadings. A simulation model based on percolation network theory and Monte Carlo technology is introduced to study the influence of nanoparticles on the composite conductivity. Results confirmed that the introduction of nanoparticles effectively reduces the effective resistance of CNT and the tunnelling resistance at CNT junctions. The intrinsic conductivity and the length diameter ratio of CNT, the intrinsic conductivity, the size and the coverage ratio of nanoparticles are the core parameters affecting the conductivity of composite. Compared with CNT/polydimethylsiloxane films, the optimized theoretical conductivity of these nano-sized particles enhanced composites can be further improved.

4.
Science ; 365(6460): 1418-1424, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31604269

RESUMO

Thermoelectric technology allows conversion between heat and electricity. Many good thermoelectric materials contain rare or toxic elements, so developing low-cost and high-performance thermoelectric materials is warranted. Here, we report the temperature-dependent interplay of three separate electronic bands in hole-doped tin sulfide (SnS) crystals. This behavior leads to synergistic optimization between effective mass (m*) and carrier mobility (µ) and can be boosted through introducing selenium (Se). This enhanced the power factor from ~30 to ~53 microwatts per centimeter per square kelvin (µW cm-1 K-2 at 300 K), while lowering the thermal conductivity after Se alloying. As a result, we obtained a maximum figure of merit ZT (ZT max) of ~1.6 at 873 K and an average ZT (ZT ave) of ~1.25 at 300 to 873 K in SnS0.91Se0.09 crystals. Our strategy for band manipulation offers a different route for optimizing thermoelectric performance. The high-performance SnS crystals represent an important step toward low-cost, Earth-abundant, and environmentally friendly thermoelectrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA