RESUMO
The organometallic "half-sandwich" compound [Os(η(6)-p-cymene)(4-(2-pyridylazo)-N,N-dimethylaniline)I]PF6 is 49× more potent than the clinical drug cisplatin in the 809 cancer cell lines that we screened and is a candidate drug for cancer therapy. We investigate the mechanism of action of compound 1 in A2780 epithelial ovarian cancer cells. Whole-transcriptome sequencing identified three missense mutations in the mitochondrial genome of this cell line, coding for ND5, a subunit of complex I (NADH dehydrogenase) in the electron transport chain. ND5 is a proton pump, helping to maintain the coupling gradient in mitochondria. The identified mutations correspond to known protein variants (p.I257V, p.N447S, and p.L517P), not reported previously in epithelial ovarian cancer. Time-series RNA sequencing suggested that osmium-exposed A2780 cells undergo a metabolic shunt from glycolysis to oxidative phosphorylation, where defective machinery, associated with mutations in complex I, could enhance activity. Downstream events, measured by time-series reverse-phase protein microarrays, high-content imaging, and flow cytometry, showed a dramatic increase in mitochondrially produced reactive oxygen species (ROS) and subsequent DNA damage with up-regulation of ATM, p53, and p21 proteins. In contrast to platinum drugs, exposure to this organo-osmium compound does not cause significant apoptosis within a 72-h period, highlighting a different mechanism of action. Superoxide production in ovarian, lung, colon, breast, and prostate cancer cells exposed to three other structurally related organo-Os(II) compounds correlated with their antiproliferative activity. DNA damage caused indirectly, through selective ROS generation, may provide a more targeted approach to cancer therapy and a concept for next-generation metal-based anticancer drugs that combat platinum resistance.
Assuntos
Neoplasias Epiteliais e Glandulares/metabolismo , Compostos Organometálicos/farmacologia , Compostos de Ósmio/farmacologia , Neoplasias Ovarianas/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Dano ao DNA/genética , DNA Mitocondrial/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mitocôndrias/genética , Mutação/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Compostos Organometálicos/química , Compostos Organometálicos/uso terapêutico , Compostos de Ósmio/química , Compostos de Ósmio/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Análise de Sequência de RNA , Fator de Transcrição AP-1/metabolismoRESUMO
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η(5) -Cp(xbiph) )Ir(phpy)(Cl)] (1-Cl), which contains π-bonded biphenyltetramethylcyclopentadienyl (Cp(xbiph) ) and C^N-chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η(5) -Cp(xbiph) )Ir(phpy)(py)](+) (1-py) aquates slowly, and is more potent (in nanomolar amounts) than both 1-Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1-py from rapid reaction with intracellular glutathione. The high potency of 1-py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2 O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.
Assuntos
Antineoplásicos/química , Cisplatino/química , Irídio/química , Compostos Organometálicos/química , Catálise , Humanos , Modelos Moleculares , Espécies Reativas de Oxigênio , Relação Estrutura-AtividadeRESUMO
Four chiral Os(II) arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 2, (S)-ImpyMe: N-(2-pyridylmethylene)-(S)-1-phenylethylamine) and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 4, (R)-ImpyMe: N-(2-pyridylmethylene)-(R)-1-phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 1, and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 3. The two iodido complexes were evaluated in the National Cancer Institute 60-cell-line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D-758116/1) and 4 (NSC: D-758118/1), share surprisingly similar cancer cell selectivity patterns with the anti-microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4, an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer-hydrogenation catalysts for imine reduction.
Assuntos
Antineoplásicos/uso terapêutico , Compostos Organometálicos/química , Osmio/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Ligantes , Osmio/química , Difração de Raios XRESUMO
Advocacy curricula in Canadian medical schools vary significantly. Expert-led, interactive workshops can effectively teach students how to address social determinants of health and advocate for patients. The Longitudinal Advocacy Training Series (LATS) is a free-of-charge, virtual program providing advocacy training created for Canadian medical students by students. The program was straightforward to implement and had high participation rates with 1140 participants representing 9.7% of enrolled Canadian medical students. As well, the program had high satisfaction reported by 87.6% of participants. The LATS toolkit enables health professional programs to develop similar programs for empowering effective health advocates.
Au Canada, les programmes de formation en matière de promotion et de défense des droits varient considérablement d'une faculté de médecine à l'autre. Les ateliers interactifs dirigés par des experts constituent un outil efficace pour enseigner aux étudiants la façon aborder les déterminants sociaux de la santé afin de défendre les droits des patients. La Longitudinal Advocacy Training Series (LATS) est un programme virtuel gratuit de formation à la défense des droits, créé par des étudiants pour les étudiants. Le programme, facile à mettre en Åuvre, a connu un taux de participation élevé, à savoir 1140 participants représentant 9,7 % des étudiants en médecine au Canada. En outre, 87,6 % des participants se sont dits très satisfaits du programme. La trousse à outils LATS permet aux programmes de formation des professions de la santé de mettre sur pied des modules similaires pour donner aux étudiants les moyens de devenir des défenseurs de la santé efficaces.
RESUMO
Ion channels are integral membrane protein complexes critical for regulation of membrane potential, cell volume, and other signaling events. As complex molecular assemblies with many interacting partners, ion channels have multiple structural and functional domains. While channel sequence and functional data are readily available across multiple online resources, there is an unmet need for functional annotation directly relating primary sequence information, 2D interactions, and three-dimensional protein structure. To this end, we present ChanFAD (Channel Functional Annotation Database), to provide the research community with a centralized resource for ion channel structure and functional data. ChanFAD provides functional annotation of PDB structures built on the National Center for Biotechnology Information's iCn3D structure viewing tool while providing additional information such as primary sequence, organism, and relevant links to other databases. Here we provide a brief tour of ChanFAD functionality while showing example use cases involving drug-channel interactions and structural changes based on mutation. ChanFAD is freely available and can be accessed at https://www.chanfad.org/.
RESUMO
Amphotericin B is a powerful but toxic drug used against fungal infections and leishmaniases. These diseases would be treated more effectively if non-toxic amphotericin derivatives could be produced on a large scale at low cost. Genetic manipulation of the amphotericin B producer, Streptomyces nodosus, has previously led to the detection and partial characterisation of 8-deoxyamphotericin B, 16-descarboxyl-16-methyl-amphotericin B, 15-deoxy-16-descarboxyl-16-methyl-15-oxo-amphotericin B, 7-oxo-amphotericin B and pentaene analogues. Here we report improved production and purification protocols that have allowed detailed chemical analyses of these compounds. The polyketide synthase product 8-deoxy-16-descarboxyl-16-methyl-amphoteronolide B was identified for the first time. In addition, the ketoreductase 10 domain of the polyketide synthase was specifically inactivated by targeted gene replacement. The resulting mutants produced truncated polyketide intermediates as linear polyenyl-pyrones.
Assuntos
Anfotericina B/química , Anfotericina B/isolamento & purificação , Streptomyces/química , Streptomyces/metabolismo , Anfotericina B/análogos & derivados , Anfotericina B/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estrutura Molecular , Engenharia de Proteínas , Streptomyces/genéticaRESUMO
Resistance to platinum drugs (used in >50% of cancer chemotherapies) is a clinical problem. Other precious metal complexes with distinct mechanisms of action might overcome this. Half-sandwich organometallic complexes containing arene or cyclopentadienyl (Cp) ligands show promise. We screened two iridium(iii) complexes [Ir(CpXbiph)(ppy)Cl] (ZL49, 1, ppy = phenylpyridine) and [Ir(CpXph)(azpyNMe2)Cl]PF6 (ZL109, 2, azpyNMe2 = N,N-dimethylphenylazopyridine) in 916 cancer cell lines from 28 tissue types. On average, complex 2 was 78× more potent than 1, 36× more active than cisplatin (CDDP), and strongly active (nanomolar) in patient-derived ovarian cancer cell lines. RNA sequencing of A2780 ovarian cells revealed upregulation of antioxidant responses (NRF2, AP-1) consistent with observed induction of reactive oxygen species (ROS). Protein microarrays, high content imaging and cell cycle analysis showed S/G2 arrest, and late-stage DNA damage response without p53 requirement. The triple-negative breast cancer cell line OCUB-M was highly sensitive to 2 as were cell lines with KIT mutations. Complex 2 exhibits a markedly different pattern of antiproliferative activity compared to the 253 drugs in the Sanger Cancer Genome database, but is most similar to osmium(ii) arene complexes which share the same azopyridine ligand. Redox modulation and DNA damage can provide a multi-targeting strategy, allowing compounds such as 2 to overcome cellular resistance to platinum anticancer drugs.
Assuntos
Antineoplásicos/farmacologia , Irídio/química , Neoplasias/patologia , Compostos Organometálicos/farmacologia , Osmio/química , Antineoplásicos/química , Biomarcadores Tumorais/genética , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Compostos Organometálicos/química , Testes Farmacogenômicos , Células Tumorais CultivadasRESUMO
The rapidly growing area of catalytic ruthenium chemistry has provided new complexes with potential as organometallic anticancer agents with novel mechanisms of action. Here we report the anticancer activity of four neutral organometallic Ru(II) arene N-tosyl-1,2-diphenylethane-1,2-diamine (TsDPEN) tethered transfer hydrogenation catalysts. The enantiomers (R,R)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8) and (S,S)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8a) exhibited higher potency than cisplatin against A2780 human ovarian cancer cells. When the N-methyl was replaced by N-H, i.e. to give (R,R)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7) and (S,S)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7a), respectively, anticancer activity decreased >5-fold. Their antiproliferative activity appears to be linked to their ability to accumulate in cells, and their mechanism of action might involve inhibition of tubulin polymerisation. This appears to be the first report of the potent anticancer activity of tethered Ru(II) arene complexes, and the structure-activity relationship suggests that the N-methyl substituents are important for potency. In the National Cancer Institute 60-cancer-cell-line screen, complexes 8 and 8a exhibited higher activity than cisplatin towards a broad range of cancer cell lines. Intriguingly, in contrast to their potent anticancer properties, complexes 8/8a are poor catalysts for asymmetric transfer hydrogenation, whereas complexes 7/7a are effective asymmetric hydrogenation catalysts.
Assuntos
Antineoplásicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Hidrogênio/química , Rutênio/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Catálise , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/metabolismo , Complexos de Coordenação/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidrogenação , Estereoisomerismo , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismoRESUMO
Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (Ir(III)) complexes [Ir(Cp(x))(XY)Cl](+/0) (Cp(x) = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cp(x) ring. In comparison, highly potent complex 4 (Cp(x) = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these Ir(III) complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 µM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic Ir(III) complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands.