Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884273

RESUMO

In animals, microRNA (miRNA) biogenesis begins with cotranscriptional cleavage of the primary (pri-)miRNA by the Microprocessor complex. Cotranscriptional splicing has been shown to influence Microprocessor cleavage when miRNAs are hosted in introns of protein-coding pri-miRNAs, but the impact of splicing on production of miRNAs hosted in long non-coding (lnc)RNAs is largely unknown. Here, we investigated the role of splicing in the biogenesis of miR-122, an lncRNA-hosted, highly expressed, medically important, liver-specific miRNA. We found that splicing inhibition by the SF3B1 inhibitor pladienolide B (PlaB) led to strong and rapid reduction in transcription of endogenous, but not plasmid-encoded, pri-miR-122, resulting in reduced production of mature miR-122. To allow detection of rapid changes in miRNA biogenesis despite the high stability of mature miRNAs, we used SLAMseq to globally quantify the effects of short-term splicing inhibition on miRNA synthesis. We observed an overall decrease in biogenesis of mature miRNAs following PlaB treatment. Surprisingly, miRNAs hosted in exons and introns were similarly affected. Together, this study provides new insights into the emerging role of splicing in transcription, demonstrating novel biological importance in promotion of miR-122 biogenesis from an lncRNA, and shows that SF3B1 is important for global miRNA biogenesis.

2.
Genome Res ; 30(4): 553-565, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269134

RESUMO

Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.


Assuntos
Bico/anatomia & histologia , Evolução Biológica , Aves/anatomia & histologia , Aves/genética , Estudos de Associação Genética , Morfogênese/genética , Regiões não Traduzidas , Animais , Sequência Conservada , Evolução Molecular , Heterogeneidade Genética , Fases de Leitura Aberta , Locos de Características Quantitativas , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA