Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am Nat ; 196(6): E160-E166, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33211562

RESUMO

AbstractAre biotic interactions stronger in the tropics? Here, we investigate nest predation in birds, a canonical example of a strong tropical biotic interaction. Counter to expectations, daily rates of nest predation vary minimally with latitude. However, life-history traits that influence nest predation have diverged between latitudes. For example, tropical species have evolved a longer average nesting period, which is associated with reduced rates of nest attendance by parents. Daily nest mortality declines with nesting period length within regions, but tropical species have a higher intercept. Consequently, for the same nesting period length, tropical species experience higher daily nest predation rates than temperate species. The implication of this analysis is that the evolved difference in nesting period length between latitudes produces a flatter latitudinal gradient in daily nest predation than would otherwise be predicted. We propose that adaptation may frequently dampen geographic patterns in interaction rates.


Assuntos
Aves/fisiologia , Geografia , Comportamento de Nidação , Comportamento Predatório , América , Animais , Clima Tropical
2.
Am Nat ; 197(5): 624, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33908833
3.
Proc Biol Sci ; 282(1812): 20151234, 2015 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-26203004

RESUMO

Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns.


Assuntos
Evolução Biológica , Ecossistema , Variação Genética , Populus/fisiologia , Smegmamorpha/fisiologia , Adaptação Biológica , Animais , Cadeia Alimentar , Fenótipo , Populus/genética , Smegmamorpha/genética
4.
Mol Ecol ; 23(23): 5888-903, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25243489

RESUMO

A 'genes-to-ecosystems' approach has been proposed as a novel avenue for integrating the consequences of intraspecific genetic variation with the underlying genetic architecture of a species to shed light on the relationships among hierarchies of ecological organization (genes → individuals → communities → ecosystems). However, attempts to identify genes with major effect on the structure of communities and/or ecosystem processes have been limited and a comprehensive test of this approach has yet to emerge. Here, we present an interdisciplinary field study that integrated a common garden containing different genotypes of a dominant, riparian tree, Populus trichocarpa, and aquatic mesocosms to determine how intraspecific variation in leaf litter alters both terrestrial and aquatic communities and ecosystem functioning. Moreover, we incorporate data from extensive trait screening and genome-wide association studies estimating the heritability and genes associated with litter characteristics. We found that tree genotypes varied considerably in the quality and production of leaf litter, which contributed to variation in phytoplankton abundances, as well as nutrient dynamics and light availability in aquatic mesocosms. These 'after-life' effects of litter from different genotypes were comparable to the responses of terrestrial communities associated with the living foliage. We found that multiple litter traits corresponding with aquatic community and ecosystem responses differed in their heritability. Moreover, the underlying genetic architecture of these traits was complex, and many genes contributed only a small proportion to phenotypic variation. Our results provide further evidence that genetic variation is a key component of aquatic-terrestrial linkages, but challenge the ability to predict community or ecosystem responses based on the actions of one or a few genes.


Assuntos
Organismos Aquáticos , Ecossistema , Variação Genética , Fitoplâncton , Populus/genética , Biota , Estudos de Associação Genética , Genótipo , Hidrobiologia , Fenótipo , Folhas de Planta
5.
Evolution ; 77(1): 26-35, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36622803

RESUMO

Do related populations that are separated by barriers predictably evolve differences from one another over time, or is such divergence idiosyncratic and unpredictable? We test these alternatives by investigating patterns of trait evolution for 54 sister pairs of Andean forest birds that live in similar environments on either side of the arid Marañón Gap, a strong dispersal barrier for humid montane species. We measured divergence in both sexual (song and plumage) and ecological (beak size and beak shape) traits. Sexual traits evolve in a clock-like fashion, with trait divergence positively correlated with genetic distance (r = 0.6-0.7). In contrast, divergence in ecological traits is uncorrelated or only loosely correlated with genetic distance (r = 0.0-0.3). Thus, for geographically isolated Andean montane forest birds that live in similar environments, divergence is predictable in sexual traits, but not for ecological traits. This means that sexual trait divergence occurs independently of adaptive ecological divergence within the mega-diverse tropical Andean avifauna. Last, we show that variation in genetic divergence across a biogeographic barrier is associated with traits that are proxies for species' opportunities for dispersal (low elevation limit and elevational niche breadth), but not with traits that are proxies for species' dispersal abilities (hand-wing index and foraging strata).


Assuntos
Deriva Genética , Especiação Genética , Animais , Aves/genética , Florestas , Fenótipo , Evolução Biológica
6.
Biodivers Data J ; (6): e22241, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674936

RESUMO

BACKGROUND: This study establishes an altiudinal gradient, spanning from the highland Andes (2400 m) to lowland Amazon, as a productive region for the study of bird pollination in Southeastern Peru. The 'Manú Gradient' has a rich history of ornithological research, the published data and resources from which lay the groundwork for analyses of plant-bird interactions. In this preliminary expedition we documented 44 plants exhibting aspects of the bird pollination syndrome, and made field observations of hummingbird visits at three sites spanning the Manú Gradient: 2800 m (Wayqecha), 1400 m (San Pedro), and 400 m (Pantiacolla). Some of the documented plant taxa are underrepresented in the bird pollination literature and could be promising avenues for future analyses of their pollination biology. The Manú Gradient is currently the focus of a concerted, international effort to describe and study the birds in the region; we propose that this region of Southeastern Peru is a productive and perhaps underestimated system to gain insight into the ecology and evolution of bird pollination. NEW INFORMATION: Observations were made on 11, 19, and 14 putatively bird pollinated plant species found at the high-, mid- and low-elevation sites along the gradient, respectively. Hummingbirds visited 18 of these plant species, with some plant species being visited by multiple hummingbird species or the same hummingbird species on differing occasions. Morphometric data is presented for putatively bird-pollinated plants, along with bill measurements from hummingbirds captured at each of three sites. Voucher specimens from this study are deposited in the herbaria of the Universidad Nacional de Agraria de La Molina (MOL), Peru and the University of British Columbia (UBC), Canada. The specimens collected represent a 'snapshot' of the diversity of bird-pollinated flora as observed over 10 day sampling windows (per site) during the breeding season for hummingbirds of Manú .

7.
Ecol Evol ; 7(17): 6649-6658, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904747

RESUMO

Long-distance migration is a behavior that is exhibited by many animal groups. The evolution of novel migration routes can play an important role in range expansions, ecological interactions, and speciation. New migration routes may evolve in response to selection in favor of reducing distance between breeding and wintering areas, or avoiding navigational barriers. Many migratory changes are likely to evolve gradually and are therefore difficult to study. Here, we attempt to connect breeding and wintering populations of myrtle warblers (Setophaga coronata coronata) to better understand the possible evolution of distinct migration routes within this species. Myrtle warblers, unlike most other warblers with breeding ranges primarily in eastern North America, have two disjunct overwintering concentrations-one in the southeastern USA and one along the Pacific Coast-and presumably distinct routes to-and-from these locations. We studied both myrtle and Audubon's warblers (S. c. auduboni) captured during their spring migration along the Pacific Coast, south of the narrow region where these two taxa hybridize. Using stable hydrogen isotopes and biometric data, we show that those myrtle warblers wintering along the southern Pacific Coast of North America are likely to breed at high latitudes in Alaska and the Yukon rather than in Alberta or further east. Our interpretation is that the evolution of this wintering range and migration route along the Pacific Coast may have facilitated the breeding expansion of myrtle warblers into northwestern North America. Moreover, these data suggest that there may be a migratory divide within genetically similar populations of myrtle warblers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA