Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Med Genet ; 61(9): 833-838, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38876772

RESUMO

Homozygous VPS50 variants have been previously described in two unrelated patients with a neurodevelopmental disorder with microcephaly, seizures and neonatal cholestasis. VPS50 encodes a subunit that is unique to the heterotetrameric endosome-associated recycling protein (EARP) complex. The other subunits of the EARP complex, such as VPS51, VPS52 and VPS53, are also shared by the Golgi-associated retrograde protein complex. We report on an 18-month-old female patient with biallelic VPS50 variants. She carried a paternally inherited heterozygous nonsense c.13A>T; p.(Lys5*) variant. By long-read genome sequencing, we characterised a structural variant with a 4.3 Mb inversion flanked by deletions at both breakpoints on the maternal allele. The ~428 kb deletion at the telomeric inversion breakpoint encompasses the entire VPS50 gene. We demonstrated a deficiency of VPS50 in patient-derived fibroblasts, confirming the loss-of-function nature of both VPS50 variants. VPS53 and VPS52 protein levels were significantly reduced and absent, respectively, in fibroblasts of the patient. These data show that VPS50 and/or EARP deficiency and the associated functional defects underlie the phenotype in patients with VPS50 pathogenic variants. The VPS50-related core phenotype comprises severe developmental delay, postnatal microcephaly, hypoplastic corpus callosum, neonatal low gamma-glutamyl transpeptidase cholestasis and failure to thrive. The disease is potentially fatal in early childhood.


Assuntos
Códon sem Sentido , Proteínas de Transporte Vesicular , Humanos , Feminino , Lactente , Códon sem Sentido/genética , Proteínas de Transporte Vesicular/genética , Microcefalia/genética , Microcefalia/patologia , Fenótipo , Colestase/genética , Colestase/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
2.
Neuropediatrics ; 55(2): 117-123, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181817

RESUMO

INTRODUCTION: We report a case study of two male pediatric patients presenting with anterior uveitis and elevated renal function parameters. Both were diagnosed with tubulointerstitial nephritis and uveitis syndrome and subsequently developed diffuse cerebral symptoms such as headache, fatigue, and diziness. METHODS: Magnetic resonance images (MRIs) of the brain showed T2-hyperintense lesions with and without gadolinium enhancement leading to brain biopsy and diagnosis of small-vessel central nervous system (CNS) vasculitis in both cases. Both patients were treated according to BrainWorks small-vessel vasculitis protocol and symptoms vanished over the course of treatment. Follow-up MRIs up to 12 months after initiation of therapy showed no signs of recurrence indicating a monophasic disease. CONCLUSION: Small-vessel CNS vasculitis can occur simultaneously to other autoimmune diseases (ADs) in the scope of polyautoimmunity. As clinical findings of CNS vasculitis are often unspecific, neurological symptoms in nonneurological ADs should be adressed thoroughly. Under suspicion of small-vessel CNS vasculitis brain biopsy is still the gold standard and only secure way of definitive diagnosis.


Assuntos
Nefrite Intersticial , Uveíte , Vasculite do Sistema Nervoso Central , Humanos , Masculino , Criança , Meios de Contraste/uso terapêutico , Gadolínio/uso terapêutico , Uveíte/complicações , Uveíte/diagnóstico , Vasculite do Sistema Nervoso Central/complicações , Vasculite do Sistema Nervoso Central/diagnóstico
3.
Neurogenetics ; 24(2): 79-93, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36653678

RESUMO

Type I inositol polyphosphate-4-phosphatase (INPP4A) belongs to the group of phosphoinositide phosphatases controlling proliferation, apoptosis, and endosome function by hydrolyzing phosphatidylinositol 3,4-bisphosphate. INPP4A produces multiple transcripts encoding shorter and longer INPP4A isoforms with hydrophilic or hydrophobic C-terminus. Biallelic INPP4A truncating variants cause a spectrum of neurodevelopmental disorders ranging from moderate intellectual disability to postnatal microcephaly with developmental and epileptic encephalopathy and (ponto)cerebellar hypoplasia. We report a girl with the novel homozygous INPP4A variant NM_001134224.2:c.2840del/p.(Gly947Glufs*12) (isoform d). She presented with postnatal microcephaly, global developmental delay, visual impairment, myoclonic seizures, and pontocerebellar hypoplasia and died at the age of 27 months. The level of mutant INPP4A mRNAs in proband-derived leukocytes was comparable to controls suggesting production of C-terminally altered INPP4A isoforms. We transiently expressed eGFP-tagged INPP4A isoform a (NM_004027.3) wildtype and p.(Gly908Glufs*12) mutant [p.(Gly947Glufs*12) according to NM_001134224.2] as well as INPP4A isoform b (NM_001566.2) wildtype and p.(Asp915Alafs*2) mutant, previously reported in family members with moderate intellectual disability, in HeLa cells and determined their subcellular distributions. While INPP4A isoform a was preferentially found in perinuclear clusters co-localizing with the GTPase Rab5, isoform b showed a net-like distribution, possibly localizing near and/or on microtubules. Quantification of intracellular localization patterns of the two INPP4A mutants revealed significant differences compared with the respective wildtype and similarity with each other. Our data suggests an important non-redundant function of INPP4A isoforms with hydrophobic or hydrophilic C-terminus in the brain.


Assuntos
Deficiência Intelectual , Microcefalia , Pré-Escolar , Feminino , Humanos , Cerebelo , Células HeLa , Deficiência Intelectual/genética , Microcefalia/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
4.
J Clin Immunol ; 43(1): 46-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121535

RESUMO

Almost 2 years into the pandemic and with vaccination of children significantly lagging behind adults, long-term pediatric humoral immune responses to SARS-CoV-2 are understudied. The C19.CHILD Hamburg (COVID-19 Child Health Investigation of Latent Disease) Study is a prospective cohort study designed to identify and follow up children and their household contacts infected in the early 2020 first wave of SARS-CoV-2. We screened 6113 children < 18 years by nasopharyngeal swab-PCR in a low-incidence setting after general lockdown, from May 11 to June 30, 2020. A total of 4657 participants underwent antibody testing. Positive tests were followed up by repeated PCR and serological testing of all household contacts over 6 months. In total, the study identified 67 seropositive children (1.44%); the median time after infection at first presentation was 83 days post-symptom onset (PSO). Follow-up of household contacts showed less than 100% seroprevalence in most families, with higher seroprevalence in families with adult index cases compared to pediatric index cases (OR 1.79, P = 0.047). Most importantly, children showed sustained seroconversion up to 9 months PSO, and serum antibody concentrations persistently surpassed adult levels (ratio serum IgG spike children vs. adults 90 days PSO 1.75, P < 0.001; 180 days 1.38, P = 0.01; 270 days 1.54, P = 0.001). In a low-incidence setting, SARS-CoV-2 infection and humoral immune response present distinct patterns in children including higher antibody levels, and lower seroprevalence in families with pediatric index cases. Children show long-term SARS-CoV-2 antibody responses. These findings are relevant to novel variants with increased disease burden in children, as well as for the planning of age-appropriate vaccination strategies.


Assuntos
Formação de Anticorpos , COVID-19 , Adulto , Humanos , Criança , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos Prospectivos , Estudos Soroepidemiológicos , Controle de Doenças Transmissíveis , Anticorpos Antivirais
5.
Neuropediatrics ; 51(6): 435-439, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32818970

RESUMO

Congenital bilateral perisylvian syndrome (CBPS) is a rare neurological disorder associated with typical clinical and imaging features such as bilateral symmetrical polymicrogyria, either exclusively or mainly affecting the perisylvian region of the brain. We present a girl with the typical clinical picture of a CBPS and a complex migration disorder, predominantly presenting as bilateral symmetrical polymicrogyria associated with corpus callosum hyperplasia, ventricular dilation, and pontine hypoplasia. At the age of 6 months, the girl showed a profound global developmental delay, seizures refractory to treatment, and severe oromotor dysfunction. Exome analysis revealed a de novo mutation in microtubule-associated serine/threonine kinase 1 (MAST1). Recently, mutations in this gene were described in six patients with a cortical migration disorder named mega-corpus-callosum syndrome with cerebellar hypoplasia. Although all patients present the clinical and imaging features of CBPS, a clear assignment between CBPS and MAST1 mutations has not been reported yet.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Lactente , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical/fisiopatologia , Mutação
6.
Front Immunol ; 13: 867577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911689

RESUMO

SARS-CoV-2 is still a major burden for global health despite effective vaccines. With the reduction of social distancing measures, infection rates are increasing in children, while data on the pediatric immune response to SARS-CoV-2 infection is still lacking. Although the typical disease course in children has been mild, emerging variants may present new challenges in this age group. Peripheral blood mononuclear cells (PBMC) from 51 convalescent children, 24 seronegative siblings from early 2020, and 51 unexposed controls were stimulated with SARS-CoV-2-derived peptide MegaPools from the ancestral and beta variants. Flow cytometric determination of activation-induced markers and secreted cytokines were used to quantify the CD4+ T cell response. The average time after infection was over 80 days. CD4+ T cell responses were detected in 61% of convalescent children and were markedly reduced in preschool children. Cross-reactive T cells for the SARS-CoV-2 beta variant were identified in 45% of cases after infection with an ancestral SARS-CoV-2 variant. The CD4+ T cell response was accompanied most predominantly by IFN-γ and Granzyme B secretion. An antiviral CD4+ T cell response was present in children after ancestral SARS-CoV-2 infection, which was reduced in the youngest age group. We detected significant cross-reactivity of CD4+ T cell responses to the more recently evolved immune-escaping beta variant. Our findings have epidemiologic relevance for children regarding novel viral variants of concern and vaccination efforts.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD4-Positivos , Criança , Pré-Escolar , Humanos , Leucócitos Mononucleares
7.
J Pediatr Genet ; 8(4): 222-225, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31687261

RESUMO

Recently, mutations in the PLPBP gene were described as a novel cause for vitamin B6-responsive epilepsy. We report the outcome in case of a male adolescent with a novel homozygous missense variant in PLPBP who was never treated with pyridoxine until the age of 16 years. He presented with only mild cognitive impairment and an early-onset, well-controlled epilepsy. In our patient, excessive seizure clusters and anxiety states occurred intermittently, suggesting that the combination might be a hallmark in untreated patients. Thus, mutations in PLPBP should be addressed even in adolescent patients with only mild learning disabilities and relatively good seizure control over the years.

8.
Transl Psychiatry ; 9(1): 156, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31150013

RESUMO

Currently, the clinical diagnosis of schizophrenia relies solely on self-reporting and clinical interview, and likely comprises heterogeneous biological subsets. Such subsets may be defined by an underlying biology leading to solid biomarkers. A transgenic rat model modestly overexpressing the full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1) protein (tgDISC1 rat) was generated that defines such a subset, inspired by our previous identification of insoluble DISC1 protein in post mortem brains from patients with chronic mental illness. Besides specific phenotypes such as DISC1 protein pathology, abnormal dopamine homeostasis, and changes in neuroanatomy and behavior, this animal model also shows subtle disturbances in overarching signaling pathways relevant for schizophrenia. In a reverse-translational approach, assuming that both the animal model and a patient subset share common disturbed signaling pathways, we identified differentially expressed transcripts from peripheral blood mononuclear cells of tgDISC1 rats that revealed an interconnected set of dysregulated genes, led by decreased expression of regulator of G-protein signaling 1 (RGS1), chemokine (C-C) ligand 4 (CCL4), and other immune-related transcripts enriched in T-cell and macrophage signaling and converging in one module after weighted gene correlation network analysis. Testing expression of this gene network in two independent cohorts of patients with schizophrenia versus healthy controls (n = 16/50 and n = 54/45) demonstrated similar expression changes. The two top markers RGS1 and CCL4 defined a subset of 27% of patients with 97% specificity. Thus, analogous aberrant signaling pathways can be identified by a blood test in an animal model and a corresponding schizophrenia patient subset, suggesting that in this animal model tailored pharmacotherapies for this patient subset could be achieved.


Assuntos
Biomarcadores/sangue , Redes Reguladoras de Genes , Esquizofrenia , Transdução de Sinais/genética , Animais , Quimiocina CCL4/sangue , Estudos de Coortes , Modelos Animais de Doenças , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas RGS/sangue , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Esquizofrenia/sangue , Esquizofrenia/classificação , Esquizofrenia/genética , Esquizofrenia/imunologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA