Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 59(34): 3135-3147, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32011131

RESUMO

Gram-negative bacterial viability is greatly reduced by the disruption of heptose sugar addition during the biosynthesis of lipopolysaccharide (LPS), an important bacterial outer membrane component. Heptosyltransferase I (HepI), a member of the GT-B structural subclass of glycosyltransferases, is therefore an essential enzyme for the biosynthesis of the LPS. The disruption of HepI also increases the susceptibility of bacteria to hydrophobic antibiotics, making HepI a potential target for drug development. In this work, the structural and dynamic properties of the catalytic cycle of HepI are explored. Previously, substrate-induced stabilization of HepI was observed and hypothesized to be assisted by interactions between the substrate and residues located on dynamic loops. Herein, positively charged amino acids were probed to identify binding partners of the negatively charged phosphates and carboxylates of Kdo2-lipid A and its analogues. Mutant enzymes were characterized to explore changes in enzymatic activities and protein stability. Molecular modeling of HepI in the presence and absence of ligands was then performed with the wild type and mutant enzyme to allow determination of the relative change in substrate binding affinity resulting from each mutation. Together, these studies suggest that multiple residues are involved in mediating substrate binding, and a lack of additivity of these effects illustrates the functional redundancy of these binding interactions. The redundancy of residues mediating conformational transitions in HepI illustrates the evolutionary importance of these structural rearrangements for catalysis. This work enhances the understanding of HepI's protein dynamics and mechanism and is a model for improving our understanding of glycosyltransferase enzymes.


Assuntos
Escherichia coli/enzimologia , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
2.
Arch Biochem Biophys ; 639: 38-43, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29288052

RESUMO

Sucralose is a commonly employed artificial sweetener that appears to destabilize protein native structures. This is in direct contrast to the bio-preservative nature of its natural counterpart, sucrose, which enhances the stability of biomolecules against environmental stress. We have further explored the molecular interactions of sucralose as compared to sucrose to illuminate the origin of the differences in their bio-preservative efficacy. We show that the mode of interactions of sucralose and sucrose in bulk solution differ subtly through the use of hydration dynamics measurement and computational simulation. Sucralose does not appear to disturb the native state of proteins for moderate concentrations (<0.2 M) at room temperature. However, as the concentration increases, or in the thermally stressed state, sucralose appears to differ in its interactions with protein leading to the reduction of native state stability. This difference in interaction appears weak. We explored the difference in the preferential exclusion model using time-resolved spectroscopic techniques and observed that both molecules appear to be effective reducers of bulk hydration dynamics. However, the chlorination of sucralose appears to slightly enhance the hydrophobicity of the molecule, which reduces the preferential exclusion of sucralose from the protein-water interface. The weak interaction of sucralose with hydrophobic pockets on the protein surface differs from the behavior of sucrose. We experimentally followed up upon the extent of this weak interaction using isothermal titration calorimetry (ITC) measurements. We propose this as a possible origin for the difference in their bio-preservative properties.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Muramidase/química , Sacarose/análogos & derivados , Animais , Galinhas , Sacarose/química
3.
Res Sq ; 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313592

RESUMO

SARS-CoV-2 infection leads to a broad range of outcomes and immune responses, with the development of neutralizing antibodies generally correlated with protection against reinfection. Here, we have characterized both neutralizing activity and T cell responses in a cluster of subjects with mild disease linked to a single spreading event. Surprisingly, we observed sex-specific associations between spike- and particularly nucleoprotein-specific T cell responses and neutralization, with pro-inflammatory cytokines being linked to higher titers only in males. Using single cell immunoprofiling, which provided matched transcriptome and T-cell receptor (TCR) profiles in restimulated CD4 + and CD8 + cells from these subjects, we identified differences in type I IFN signaling that may underlie this difference in antibody generation. Finally, we also identified several TCRs associated with cytokine producing T cells. Altogether, our work maps the breadth of immunological outcomes of SARS-CoV2 infections and highlight the potential role of sex-specific feedback loops during the generation of neutralizing antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA