Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Chembiochem ; 23(15): e202200335, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35705492

RESUMO

Enzymatic enantiopreference is one of the key advantages of biocatalysis. While exploring the synthesis of small cyclic (chiral amines) such as 3-aminotetrahydrofuran (THF-amine), using the (S)-selective transaminase from Halomonas elongata (HEwT), inversion of the enantiopreference was observed at increasing substrate loadings. In addition, the enantiopreference could be altered by variation of the ionic strength, or of the co-solvent content in the reaction mixture. For example, using otherwise identical reaction conditions, the presence of 2 M sodium chloride gave (R)-THF-amine (14 % ee), while the addition of 2.2 M isopropyl alcohol gave the (S)-enantiomer in 30 % ee. While the underlying cause is not currently understood, it appears likely that subtle changes in the structure of the enzyme cause the shift in enantiopreference and are worth exploring further.


Assuntos
Aminas , Halomonas , Aminas/química , Biocatálise , Estereoisomerismo , Especificidade por Substrato , Transaminases/metabolismo
2.
Chembiochem ; 22(7): 1223-1231, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33237595

RESUMO

ß-Glucosidases are used in the food industry to hydrolyse glycosidic bonds in complex sugars, with enzymes sourced from extremophiles better able to tolerate the process conditions. In this work, a novel ß-glycosidase from the acidophilic organism Alicyclobacillus herbarius was cloned and heterologously expressed in Escherichia coli BL21(DE3). AheGH1 was stable over a broad range of pH values (5-11) and temperatures (4-55 °C). The enzyme exhibited excellent tolerance to fructose and good tolerance to glucose, retaining 65 % activity in the presence of 10 % (w/v) glucose. It also tolerated organic solvents, some of which appeared to have a stimulating effect, in particular ethanol with a 1.7-fold increase in activity at 10 % (v/v). The enzyme was then applied for the cleavage of isoflavone from isoflavone glucosides in an ethanolic extract of soy flour, to produce soy isoflavones, which constitute a valuable food supplement, full conversion was achieved within 15 min at 30 °C.


Assuntos
Alicyclobacillus/enzimologia , Glycine max/química , Isoflavonas/metabolismo , beta-Glucosidase/metabolismo , Domínio Catalítico , Estabilidade Enzimática , Escherichia coli/metabolismo , Glicosídeos/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Isoflavonas/química , Cinética , Estrutura Terciária de Proteína , Glycine max/metabolismo , Temperatura , beta-Glucosidase/química , beta-Glucosidase/genética
3.
Chemistry ; 27(67): 16616-16620, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585789

RESUMO

The combination of biocatalysis and chemocatalysis can be more powerful than either technique alone. However, combining the two is challenging due to typically very different reaction conditions. Herein, chiral N-aryl amines, key features of many active pharmaceutical ingredients, are accessed in excellent enantioselectivity (typically>99.5 % ee) by combining transaminases with the Buchwald-Hartwig amination. By employing a bi-phasic buffer-toluene system as well as the ligand GPhos, the telescoped cascade proceeded with up to 89 % overall conversion in the presence of excess alanine. No coupling to alanine was observed.


Assuntos
Aminas , Transaminases , Aminação , Biocatálise , Ligantes , Transaminases/metabolismo
4.
ACS Catal ; 14(5): 2985-2991, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449536

RESUMO

The unmatched chemo-, regio-, and stereoselectivity of enzymes renders them powerful catalysts in the synthesis of chiral active pharmaceutical ingredients (APIs). Inspired by the discovery route toward the LPA1-antagonist BMS-986278, access to the API building block (1S,3R)-3-hydroxycyclohexanecarbonitrile was envisaged using an ene reductase (ER) and alcohol dehydrogenase (ADH) to set both stereocenters. Starting from the commercially available cyclohexene-1-nitrile, a C-H oxyfunctionalization step was required to introduce the ketone functional group, yet several chemical allylic oxidation strategies proved unsuccessful. Enzymatic strategies for allylic oxidation are underdeveloped, with few examples on selected substrates with cytochrome P450s and unspecific peroxygenases (UPOs). In this case, UPOs were found to catalyze the desired allylic oxidation with high chemo- and regioselectivity, at substrate loadings of up to 200 mM, without the addition of organic cosolvents, thus enabling the subsequent ER and ADH steps in a three-step one-pot cascade. UPOs even displayed unreported enantioselective oxyfunctionalization and overoxidation of the substituted cyclohexene. After screening of enzyme panels, the final product was obtained at titers of 85% with 97% ee and 99% de, with a substrate loading of 50 mM, the ER being the limiting step. This synthetic approach provides the first example of a three-step, one-pot UPO-ER-ADH cascade and highlights the potential for UPOs to catalyze diverse enantioselective allylic hydroxylations and oxidations that are otherwise difficult to achieve.

5.
JACS Au ; 3(6): 1642-1649, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37388678

RESUMO

Chiral N-heterocycles are a common motif in many active pharmaceutical ingredients; however, their synthesis often relies on the use of heavy metals. In recent years, several biocatalytic approaches have emerged to reach enantiopurity. Here, we describe the asymmetric synthesis of 2-substituted pyrrolidines and piperidines, starting from commercially available ω-chloroketones by using transaminases, which has not yet been comprehensively studied. Analytical yields of up to 90% and enantiomeric excesses of up to >99.5% for each enantiomer were achieved, which has not previously been shown for bulky substituents. This biocatalytic approach was applied to synthesize (R)-2-(p-chlorophenyl)pyrrolidine on a 300 mg scale, affording 84% isolated yield, with >99.5% ee.

6.
ChemSusChem ; 15(16): e202200811, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35671069

RESUMO

6-Aminocaproic acid (6ACA) is a key building block and an attractive precursor of caprolactam, which is used to synthesize nylon 6, one of the most common polymers manufactured nowadays. (Bio)-production of platform chemicals from renewable feedstocks is instrumental to tackle climate change and decrease fossil fuel dependence. Here, the cell-free biosynthesis of 6ACA from 6-hydroxycaproic acid was achieved using a co-immobilized multienzyme system based on horse liver alcohol dehydrogenase, Halomonas elongata transaminase, and Lactobacillus pentosus NADH oxidase for in-situ cofactor recycling, with >90 % molar conversion (m.c.) The integration of a step to synthesize hydroxy-acid from lactone by immobilized Candida antarctica lipase B resulted in >80 % m.c. of ϵ-caprolactone to 6ACA, >20 % of δ-valerolactone to 5-aminovaleric acid, and 30 % of γ-butyrolactone to γ-aminobutyric acid in one-pot batch reactions. Two serial packed-bed reactors were set up using these biocatalysts and applied to the continuous-flow synthesis of 6ACA from ϵ-caprolactone, achieving a space-time yield of up to 3.31 g6ACA h-1 L-1 with a segmented liquid/air flow for constant oxygen supply.


Assuntos
Caprolactama , Animais , Biocatálise , Caproatos , Caprolactama/análogos & derivados , Enzimas Imobilizadas/metabolismo , Cavalos , Lactonas , Polímeros
7.
Nat Commun ; 13(1): 5021, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028482

RESUMO

Noncanonical redox cofactors are attractive low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)+) in biotransformation. However, engineering enzymes to utilize them is challenging. Here, we present a high-throughput directed evolution platform which couples cell growth to the in vivo cycling of a noncanonical cofactor, nicotinamide mononucleotide (NMN+). We achieve this by engineering the life-essential glutathione reductase in Escherichia coli to exclusively rely on the reduced NMN+ (NMNH). Using this system, we develop a phosphite dehydrogenase (PTDH) to cycle NMN+ with ~147-fold improved catalytic efficiency, which translates to an industrially viable total turnover number of ~45,000 in cell-free biotransformation without requiring high cofactor concentrations. Moreover, the PTDH variants also exhibit improved activity with another structurally deviant noncanonical cofactor, 1-benzylnicotinamide (BNA+), showcasing their broad applications. Structural modeling prediction reveals a general design principle where the mutations and the smaller, noncanonical cofactors together mimic the steric interactions of the larger, natural cofactors NAD(P)+.


Assuntos
NADH NADPH Oxirredutases , NAD , Escherichia coli , NADP , Oxirredução
8.
J Biotechnol ; 329: 21-28, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33508335

RESUMO

Current methods for the production of natural vanilla extract are long and tedious, and the efficiency of the vanillin extraction is usually conditioned by different factors during the traditional curing process (temperatures and weather conditions). As an important fraction of vanillin is present in the form of glucovanillin in green beans, endogenous ß-glucosidases contribute to its hydrolysis; however, these enzymes lose efficiency during the curing process. The use of extremophilic organisms as a source of an appropriate exogenous enzyme can offer a valid alternative when producing natural vanillin. Here, a ß-glucosidase from the thermo-acidophilic organism Alicyclobacillus acidiphilus (AacGH1) was cloned, expressed in E. coli BL21, and fully characterized in respect to both function and crystal structure. Notably, AacGH1 was stable at a temperature up to 50 °C and exhibited good tolerance to glucose, fructose and organic solvents, in particular it maintained full activity in the presence of up to 20 % (v/v) ethanol. The enzyme was then successfully applied to an ethanol-water (20 % (v/v)) extract of green vanilla beans and the complete hydrolysis of glucovanillin (1.7 mM) to vanillin, and other flavour compounds commonly found in vanilla, was achieved using 0.5 mg/mL of enzyme in just 15 min at 30 °C.


Assuntos
Vanilla , Alicyclobacillus , Benzaldeídos , Escherichia coli/genética , Extratos Vegetais , beta-Glucosidase/genética
9.
ChemCatChem ; 12(24): 6082-6102, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33381242

RESUMO

Enzymatic approaches to challenges in chemical synthesis are increasingly popular and very attractive to industry given their green nature and high efficiency compared to traditional methods. In this historical review we highlight the developments across several fields that were necessary to create the modern field of biocatalysis, with enzyme engineering and directed evolution at its core. We exemplify the modular, incremental, and highly unpredictable nature of scientific discovery, driven by curiosity, and showcase the resulting examples of cutting-edge enzymatic applications in industry.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32793563

RESUMO

The identification and 3D structural characterization of a homolog of the (R)-selective transaminase (RTA) from Aspergillus terreus (AtRTA), from the thermotolerant fungus Thermomyces stellatus (TsRTA) is here reported. The thermostability of TsRTA (40% retained activity after 7 days at 40°C) was initially attributed to its tetrameric form in solution, however subsequent studies of AtRTA revealed it also exists predominantly as a tetramer yet, at 40°C, it is inactivated within 48 h. The engineering of a cysteine residue to promote disulfide bond formation across the dimer-dimer interface stabilized both enzymes, with TsRTA_G205C retaining almost full activity after incubation at 50°C for 7 days. Thus, the role of this mutation was elucidated and the importance of stabilizing the tetramer for overall stability of RTAs is highlighted. TsRTA accepts the common amine donors (R)-methylbenzylamine, isopropylamine, and d-alanine as well as aromatic and aliphatic ketones and aldehydes.

11.
Chem Sci ; 10(23): 5952-5958, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31360401

RESUMO

Directed evolution of transaminases is a widespread technique in the development of highly sought-after biocatalysts for industrial applications. This process, however, is challenged by the limited availability of effective high-throughput protocols to evaluate mutant libraries. Here we report a rapid, reliable, and widely applicable background depletion method for solid-phase screening of transaminase variants, which was successfully applied to a transaminase from Halomonas elongata (HEWT), evolved through rounds of random mutagenesis towards a series of diverse prochiral ketones. This approach enabled the identification of transaminase variants in viable cells with significantly improved activity towards para-substituted acetophenones (up to 60-fold), as well as tetrahydrothiophen-3-one and related substrates. Rationalisation of the mutants was assisted by determination of the high-resolution wild-type HEWT crystal structure presented herein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA