RESUMO
It has been almost a century since biologically active gibberellin (GA) was isolated. Here, we give a historical overview of the early efforts in establishing the GA biosynthesis and catabolism pathway, characterizing the enzymes for GA metabolism, and elucidating their corresponding genes. We then highlight more recent studies that have identified the GA receptors and early GA signaling components (DELLA repressors and F-box activators), determined the molecular mechanism of DELLA-mediated transcription reprograming, and revealed how DELLAs integrate multiple signaling pathways to regulate plant vegetative and reproductive development in response to internal and external cues. Finally, we discuss the GA transporters and their roles in GA-mediated plant development.
Assuntos
Giberelinas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Desenvolvimento Vegetal/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genéticaRESUMO
BACKGROUND: Semi-dwarfing alleles are used widely in cereals to confer improved lodging resistance and assimilate partitioning. The most widely deployed semi-dwarfing alleles in rice and barley encode the gibberellin (GA)-biosynthetic enzyme GA 20-OXIDASE2 (GA20OX2). The hexaploid wheat genome carries three homoeologous copies of GA20OX2, and because of functional redundancy, loss-of-function alleles of a single homoeologue would not be selected in wheat breeding programmes. Instead, approximately 70% of wheat cultivars carry gain-of-function mutations in REDUCED HEIGHT 1 (RHT1) genes that encode negative growth regulators and are degraded in response to GA. Semi-dwarf Rht-B1b or Rht-D1b alleles encode proteins that are insensitive to GA-mediated degradation. However, because RHT1 is expressed ubiquitously these alleles have pleiotropic effects that confer undesirable traits in some environments. RESULTS: We have applied reverse genetics to combine loss-of-function alleles in all three homoeologues of wheat GA20OX2 and its paralogue GA20OX1 and evaluated their performance in three years of field trials. ga20ox1 mutants exhibited a mild height reduction (approximately 3%) suggesting GA20OX1 plays a minor role in stem elongation in wheat. ga20ox2 mutants have reduced GA1 content and are 12-32% shorter than their wild-type segregants, comparable to the effect of the Rht-D1b 'Green Revolution' allele. The ga20ox2 mutants showed no significant negative effects on yield components in the spring wheat variety 'Cadenza'. CONCLUSIONS: Our study demonstrates that chemical mutagenesis can expand genetic variation in polyploid crops to uncover novel alleles despite the difficulty in identifying appropriate mutations for some target genes and the negative effects of background mutations. Field experiments demonstrate that mutations in GA20OX2 reduce height in wheat, but it will be necessary to evaluate the effect of these alleles in different genetic backgrounds and environments to determine their value in wheat breeding as alternative semi-dwarfing alleles.
Assuntos
Fenótipo , Proteínas de Plantas , Triticum , Triticum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Oryza/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Alelos , Giberelinas/metabolismo , Genes de PlantasRESUMO
BACKGROUND: Bread wheat (Triticum aestivum) is a major source of nutrition globally, but yields can be seriously compromised by water limitation. Redistribution of growth between shoots and roots is a common response to drought, promoting plant survival, but reducing yield. Gibberellins (GAs) are necessary for shoot and root elongation, but roots maintain growth at lower GA concentrations compared with shoots, making GA a suitable hormone for mediating this growth redistribution. In this study, the effect of progressive drought on GA content was determined in the base of the 4th leaf and root tips of wheat seedlings, containing the growing regions, as well as in the remaining leaf and root tissues. In addition, the contents of other selected hormones known to be involved in stress responses were determined. Transcriptome analysis was performed on equivalent tissues and drought-associated differential expression was determined for hormone-related genes. RESULTS: After 5 days of applying progressive drought to 10-day old seedlings, the length of leaf 4 was reduced by 31% compared with watered seedlings and this was associated with significant decreases in the concentrations of bioactive GA1 and GA4 in the leaf base, as well as of their catabolites and precursors. Root length was unaffected by drought, while GA concentrations were slightly, but significantly higher in the tips of droughted roots compared with watered plants. Transcripts for the GA-inactivating gene TaGA2ox4 were elevated in the droughted leaf, while those for several GA-biosynthesis genes were reduced by drought, but mainly in the non-growing region. In response to drought the concentrations of abscisic acid, cis-zeatin and its riboside increased in all tissues, indole-acetic acid was unchanged, while trans-zeatin and riboside, jasmonate and salicylic acid concentrations were reduced. CONCLUSIONS: Reduced leaf elongation and maintained root growth in wheat seedlings subjected to progressive drought were associated with attenuated and increased GA content, respectively, in the growing regions. Despite increased TaGA2ox4 expression, lower GA levels in the leaf base of droughted plants were due to reduced biosynthesis rather than increased catabolism. In contrast to GA, the other hormones analysed responded to drought similarly in the leaf and roots, indicating organ-specific differential regulation of GA metabolism in response to drought.
Assuntos
Plântula , Triticum , Secas , Giberelinas/metabolismo , Hormônios/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Triticum/metabolismo , Água/metabolismo , ZeatinaRESUMO
Root elongation depends on the action of the gibberellin (GA) growth hormones, which promote cell production in the root meristem and cell expansion in the elongation zone. Sites of GA biosynthesis in the roots of 7-d-old Arabidopsis thaliana seedlings were investigated using tissue-specific GA inactivation in wild-type (Col-0) or rescue of GA-deficient dwarf mutants. Tissue-specific GA depletion was achieved by ectopic expression of the GA-inactivating enzyme AtGA2ox2, which is specific for C19 -GAs, and AtGA2ox7, which acts on C20 -GA precursors. In addition, tissue-specific rescue of ga20ox triple and ga3ox double mutants was shown. Furthermore, GUS reporter lines for major GA20ox, GA3ox and GA2ox genes were used to observe their expression domains in the root. The effects of expressing these constructs on the lengths of the root apical meristem and cortical cells in the elongation zone confirmed that roots are autonomous for GA biosynthesis, which occurs in multiple tissues, with the endodermis a major site of synthesis. The results are consistent with the early stages of GA biosynthesis within the root occurring in the meristematic region and indicate that the penultimate step of GA biosynthesis, GA 20-oxidation, is required in both the meristem and elongation zone.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas , Meristema/metabolismoRESUMO
Increased mechanical impedance induced by soil drying or compaction causes reduction in plant growth and crop yield. However, how mechanical impedance interacts with nutrient stress has been largely unknown. Here, we investigated the effect of mechanical impedance on the growth of wheat seedlings under contrasting phosphorus (P) supply in a sand culture system which allows the mechanical impedance to be independent of water and nutrient availability. Two wheat genotypes containing the Rht-B1a (tall) or Rht-B1c (gibberellin-insensitive dwarf) alleles in the Cadenza background were used and their shoot and root traits were determined. Mechanical impedance caused a significant reduction in plant growth under sufficient P supply, including reduced shoot and root biomass, leaf area and total root length. By contrast, under low P supply, mechanical impedance did not affect biomass, tiller number, leaf length, and nodal root number in both wheat genotypes, indicating that the magnitude of the growth restriction imposed by mechanical impedance was dependent on P supply. The interaction effect between mechanical impedance and P level was significant on most plant traits except for axial and lateral root length, suggesting an evident physical and nutritional interaction. Our findings provide valuable insights into the integrated effects of plants in response to both soil physical and nutritional stresses. Understanding the response patterns is critical for optimizing soil tillage and nutrient management in the field.
RESUMO
Gibberellins are produced by all vascular plants and several fungal and bacterial species that associate with plants as pathogens or symbionts. In the 60 years since the first experiments on the biosynthesis of gibberellic acid in the fungus Fusarium fujikuroi, research on gibberellin biosynthesis has advanced to provide detailed information on the pathways, biosynthetic enzymes and their genes in all three kingdoms, in which the production of the hormones evolved independently. Gibberellins function as hormones in plants, affecting growth and differentiation in organs in which their concentration is very tightly regulated. Current research in plants is focused particularly on the regulation of gibberellin biosynthesis and inactivation by developmental and environmental cues, and there is now considerable information on the molecular mechanisms involved in these processes. There have also been recent advances in understanding gibberellin transport and distribution and their relevance to plant development. This review describes our current understanding of gibberellin metabolism and its regulation, highlighting the more recent advances in this field.
Assuntos
Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Redes e Vias Metabólicas , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismoRESUMO
Gibberellins (GAs) are crucial phytohormones involved in many aspects of plant growth and development, including plant-microbe interactions, which has led to GA production by plant-associated fungi and bacteria as well. While the GA biosynthetic pathways in plants and fungi have been elucidated and found to have arisen independently through convergent evolution, little has been uncovered about GA biosynthesis in bacteria. Some nitrogen-fixing, symbiotic, legume-associated rhizobia, including Bradyrhizobium japonicum-the symbiont of soybean-and Sinorhizobium fredii-a broad-host-nodulating species-contain a putative GA biosynthetic operon, or gene cluster. Through functional characterization of five unknown genes, we demonstrate that this operon encodes the enzymes necessary to produce GA9, thereby elucidating bacterial GA biosynthesis. The distinct nature of these enzymes indicates that bacteria have independently evolved a third biosynthetic pathway for GA production. Furthermore, our results also reveal a central biochemical logic that is followed in all three convergently evolved GA biosynthetic pathways.
Assuntos
Bradyrhizobium/metabolismo , Evolução Molecular , Giberelinas/biossíntese , Sinorhizobium fredii/metabolismo , Giberelinas/química , Conformação MolecularRESUMO
Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control the metabolism and homeostasis of the major form of auxin in plants, indole-3-acetic acid (IAA), remains unclear. In this paper, we initially describe the function of the Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1 (AtDAO1). Transcriptional and translational reporter lines revealed that AtDAO1 encodes a highly root-expressed, cytoplasmically localized IAA oxidase. Stable isotope-labeled IAA feeding studies of loss and gain of function AtDAO1 lines showed that this oxidase represents the major regulator of auxin degradation to 2-oxoindole-3-acetic acid (oxIAA) in Arabidopsis Surprisingly, AtDAO1 loss and gain of function lines exhibited relatively subtle auxin-related phenotypes, such as altered root hair length. Metabolite profiling of mutant lines revealed that disrupting AtDAO1 regulation resulted in major changes in steady-state levels of oxIAA and IAA conjugates but not IAA. Hence, IAA conjugation and catabolism seem to regulate auxin levels in Arabidopsis in a highly redundant manner. We observed that transcripts of AtDOA1 IAA oxidase and GH3 IAA-conjugating enzymes are auxin-inducible, providing a molecular basis for their observed functional redundancy. We conclude that the AtDAO1 gene plays a key role regulating auxin homeostasis in Arabidopsis, acting in concert with GH3 genes, to maintain auxin concentration at optimal levels for plant growth and development.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Dioxigenases/metabolismo , Genes de Plantas , Homeostase , Ácidos Indolacéticos/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Metabolômica , Modelos Biológicos , Mutação/genética , Oxirredução , Fenótipo , Filogenia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/metabolismoRESUMO
BACKGROUND: The gibberellin (GA) pathway plays a central role in the regulation of plant development, with the 2-oxoglutarate-dependent dioxygenases (2-ODDs: GA20ox, GA3ox, GA2ox) that catalyse the later steps in the biosynthetic pathway of particularly importance in regulating bioactive GA levels. Although GA has important impacts on crop yield and quality, our understanding of the regulation of GA biosynthesis during wheat and barley development remains limited. In this study we identified or assembled genes encoding the GA 2-ODDs of wheat, barley and Brachypodium distachyon and characterised the wheat genes by heterologous expression and transcript analysis. RESULTS: The wheat, barley and Brachypodium genomes each contain orthologous copies of the GA20ox, GA3ox and GA2ox genes identified in rice, with the exception of OsGA3ox1 and OsGA2ox5 which are absent in these species. Some additional paralogs of 2-ODD genes were identified: notably, a novel gene in the wheat B genome related to GA3ox2 was shown to encode a GA 1-oxidase, named as TaGA1ox-B1. This enzyme is likely to be responsible for the abundant 1ß-hydroxylated GAs present in developing wheat grains. We also identified a related gene in barley, located in a syntenic position to TaGA1ox-B1, that encodes a GA 3,18-dihydroxylase which similarly accounts for the accumulation of unusual GAs in barley grains. Transcript analysis showed that some paralogs of the different classes of 2-ODD were expressed mainly in a single tissue or at specific developmental stages. In particular, TaGA20ox3, TaGA1ox1, TaGA3ox3 and TaGA2ox7 were predominantly expressed in developing grain. More detailed analysis of grain-specific gene expression showed that while the transcripts of biosynthetic genes were most abundant in the endosperm, genes encoding inactivation and signalling components were more highly expressed in the seed coat and pericarp. CONCLUSIONS: The comprehensive expression and functional characterisation of the multigene families encoding the 2-ODD enzymes of the GA pathway in wheat and barley will provide the basis for a better understanding of GA-regulated development in these species. This analysis revealed the existence of a novel, endosperm-specific GA 1-oxidase in wheat and a related GA 3,18-dihydroxylase enzyme in barley that may play important roles during grain expansion and development.
Assuntos
Vias Biossintéticas/genética , Genes de Plantas , Giberelinas/biossíntese , Oxigenases de Função Mista/genética , Família Multigênica , Poaceae/enzimologia , Poaceae/genética , Biocatálise , Brachypodium/enzimologia , Brachypodium/genética , Regulação da Expressão Gênica de Plantas , Hordeum/enzimologia , Hordeum/genética , Oryza/enzimologia , Oryza/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/genética , Triticum/enzimologia , Triticum/genéticaRESUMO
The gibberellins (GAs) are a group of endogenous compounds that promote the growth of most plant organs, including stem internodes. We show that in tobacco (Nicotiana tabacum) the presence of leaves is essential for the accumulation of bioactive GAs and their immediate precursors in the stem and consequently for normal stem elongation, cambial proliferation, and xylem fiber differentiation. These processes do not occur in the absence of maturing leaves but can be restored by application of C(19)-GAs, identifying the presence of leaves as a requirement for GA signaling in stems and revealing the fundamental role of GAs in secondary growth regulation. The use of reporter genes for GA activity and GA-directed DELLA protein degradation in Arabidopsis thaliana confirms the presence of a mobile signal from leaves to the stem that induces GA signaling.
Assuntos
Giberelinas/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Dados de Sequência Molecular , Transdução de Sinais/fisiologiaRESUMO
Gibberellin (GA) biosynthesis is necessary for normal plant development, with later GA biosynthetic stages being governed by multigene families. Arabidopsis thaliana contains five GA 20-oxidase (GA20ox) genes, and past work has demonstrated the importance of GA20ox1 and -2 for growth and fertility. Here, we show through systematic mutant analysis that GA20ox1, -2, and -3 are the dominant paralogs; their absence results in severe dwarfism and almost complete loss of fertility. In vitro analysis revealed that GA20ox4 has full GA20ox activity, but GA20ox5 catalyzes only the first two reactions of the sequence by which GA(12) is converted to GA(9). GA20ox3 functions almost entirely redundantly with GA20ox1 and -2 at most developmental stages, including the floral transition, while GA20ox4 and -5 have very minor roles. These results are supported by analysis of the gene expression patterns in promoter:ß-glucuronidase reporter lines. We demonstrate that fertility is highly sensitive to GA concentration, that GA20ox1, -2, and -3 have significant effects on floral organ growth and anther development, and that both GA deficiency and overdose impact on fertility. Loss of GA20ox activity causes anther developmental arrest, with the tapetum failing to degrade. Some phenotypic recovery of late flowers in GA-deficient mutants, including ga1-3, indicated the involvement of non-GA pathways in floral development.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Flores/crescimento & desenvolvimento , Oxigenases de Função Mista/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/biossíntese , Oxigenases de Função Mista/genética , Mutação , Filogenia , Infertilidade das Plantas , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimentoRESUMO
The hormone gibberellin (GA) is a key regulator of plant growth. Many of the components of the gibberellin signal transduction [e.g., GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA], biosynthesis [e.g., GA 20-oxidase (GA20ox) and GA3ox], and deactivation pathways have been identified. Gibberellin binds its receptor, GID1, to form a complex that mediates the degradation of DELLA proteins. In this way, gibberellin relieves DELLA-dependent growth repression. However, gibberellin regulates expression of GID1, GA20ox, and GA3ox, and there is also evidence that it regulates DELLA expression. In this paper, we use integrated mathematical modeling and experiments to understand how these feedback loops interact to control gibberellin signaling. Model simulations are in good agreement with in vitro data on the signal transduction and biosynthesis pathways and in vivo data on the expression levels of gibberellin-responsive genes. We find that GA-GID1 interactions are characterized by two timescales (because of a lid on GID1 that can open and close slowly relative to GA-GID1 binding and dissociation). Furthermore, the model accurately predicts the response to exogenous gibberellin after a number of chemical and genetic perturbations. Finally, we investigate the role of the various feedback loops in gibberellin signaling. We find that regulation of GA20ox transcription plays a significant role in both modulating the level of endogenous gibberellin and generating overshoots after the removal of exogenous gibberellin. Moreover, although the contribution of other individual feedback loops seems relatively small, GID1 and DELLA transcriptional regulation acts synergistically with GA20ox feedback.
Assuntos
Algoritmos , Giberelinas/metabolismo , Modelos Genéticos , Transcrição Gênica/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacosRESUMO
Excessive gibberellin (GA) signalling, mediated through the DELLA proteins, has a negative impact on plant fertility. Loss of DELLA activity in the monocot rice (Oryza sativa) causes complete male sterility, but not in the dicot model Arabidopsis (Arabidopsis thaliana) ecotype Landsberg erecta (Ler), in which DELLA function has been studied most extensively, leading to the assumption that DELLA activity is not essential for Arabidopsis pollen development. A novel DELLA fertility phenotype was identified in the Columbia (Col-0) ecotype that necessitates re-evaluation of the general conclusions drawn from Ler. Fertility phenotypes were compared between the Col-0 and Ler ecotypes under conditions of chemical and genetic GA overdose, including mutants in both ecotypes lacking the DELLA paralogues REPRESSOR OF ga1-3 (RGA) and GA INSENSITIVE (GAI). Ler displays a less severe fertility phenotype than Col-0 under GA treatment. Col-0 rga gai mutants, in contrast with the equivalent Ler phenotype, were entirely male sterile, caused by post-meiotic defects in pollen development, which were rescued by the reintroduction of DELLA into either the tapetum or developing pollen. We conclude that DELLA activity is essential for Arabidopsis pollen development. Differences between the fertility responses of Col-0 and Ler might be caused by differences in downstream signalling pathways or altered DELLA expression.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ecótipo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Proteínas Repressoras/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Teste de Complementação Genética , Meiose , Mutação/genética , Infertilidade das Plantas , Pólen/citologia , Proteínas Repressoras/genéticaRESUMO
Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation.
Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Glutationa/metabolismo , Homeostase , Mutação , Oxirredução , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética , TranscriptomaRESUMO
Plant hormones are small molecules that regulate plant growth and development, as well as responses to changing environmental conditions. By modifying the production, distribution or signal transduction of these hormones, plants are able to regulate and coordinate both growth and/or stress tolerance to promote survival or escape from environmental stress. A central role for the gibberellin (GA) class of growth hormones in the response to abiotic stress is becoming increasingly evident. Reduction of GA levels and signalling has been shown to contribute to plant growth restriction on exposure to several stresses, including cold, salt and osmotic stress. Conversely, increased GA biosynthesis and signalling promote growth in plant escape responses to shading and submergence. In several cases, GA signalling has also been linked to stress tolerance. The transcriptional regulation of GA metabolism appears to be a major point of regulation of the GA pathway, while emerging evidence for interaction of the GA-signalling molecule DELLA with components of the signalling pathway for the stress hormone jasmonic acid suggests additional mechanisms by which GA signalling may integrate multiple hormone signalling pathways in the response to stress. Here, we review the evidence for the role of GA in these processes, and the regulation of the GA signalling pathway on exposure to abiotic stress. The potential mechanisms by which GA signalling modulates stress tolerance are also discussed.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Giberelinas/metabolismo , Estresse Fisiológico , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Temperatura Baixa , Ciclopentanos/metabolismo , Meio Ambiente , Giberelinas/genética , Luz , Pressão Osmótica , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas , Salinidade , Transdução de Sinais , Transcrição GênicaRESUMO
The biosynthesis of gibberellic acid (GA(3)) by the fungus Fusarium fujikuroi is catalyzed by seven enzymes encoded in a gene cluster. While four of these enzymes are characterized as cytochrome P450 monooxygenases, the nature of a fifth oxidase, GA(4) desaturase (DES), is unknown. DES converts GA(4) to GA(7) by the formation of a carbon-1,2 double bond in the penultimate step of the pathway. Here, we show by expression of the des complementary DNA in Escherichia coli that DES has the characteristics of a 2-oxoglutarate-dependent dioxygenase. Although it has low amino acid sequence homology with known 2-oxoglutarate-dependent dioxygenases, putative iron- and 2-oxoglutarate-binding residues, typical of such enzymes, are apparent in its primary sequence. A survey of sequence databases revealed that homologs of DES are widespread in the ascomycetes, although in most cases the homologs must participate in non-gibberellin (GA) pathways. Expression of des from the cauliflower mosaic virus 35S promoter in the plant species Solanum nigrum, Solanum dulcamara, and Nicotiana sylvestris resulted in substantial growth stimulation, with a 3-fold increase in height in S. dulcamara compared with controls. In S. nigrum, the height increase was accompanied by a 20-fold higher concentration of GA(3) in the growing shoots than in controls, although GA(1) content was reduced. Expression of des was also shown to partially restore growth in plants dwarfed by ectopic expression of a GA 2-oxidase (GA-deactivating) gene, consistent with GA(3) being protected from 2-oxidation. Thus, des has the potential to enable substantial growth increases, with practical implications, for example, in biomass production.
Assuntos
Proteínas Fúngicas/isolamento & purificação , Fusarium/enzimologia , Oxigenases de Função Mista/isolamento & purificação , Nicotiana/crescimento & desenvolvimento , Solanum/crescimento & desenvolvimento , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Caulimovirus/enzimologia , Caulimovirus/genética , Caulimovirus/metabolismo , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Bases de Dados Genéticas , Ensaios Enzimáticos/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Vetores Genéticos , Giberelinas/biossíntese , Giberelinas/genética , Giberelinas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solanum/genética , Solanum/metabolismo , Especificidade por Substrato , Nicotiana/genética , Nicotiana/metabolismoRESUMO
The GAs (gibberellins) comprise a large group of diterpenoid carboxylic acids that are ubiquitous in higher plants, in which certain members function as endogenous growth regulators, promoting organ expansion and developmental changes. These compounds are also produced by some species of lower plants, fungi and bacteria, although, in contrast to higher plants, the function of GAs in these organisms has only recently been investigated and is still unclear. In higher plants, GAs are synthesized by the action of terpene cyclases, cytochrome P450 mono-oxygenases and 2-oxoglutarate-dependent dioxygenases localized, respectively, in plastids, the endomembrane system and the cytosol. The concentration of biologically active GAs at their sites of action is tightly regulated and is moderated by numerous developmental and environmental cues. Recent research has focused on regulatory mechanisms, acting primarily on expression of the genes that encode the dioxygenases involved in biosynthesis and deactivation. The present review discusses the current state of knowledge on GA metabolism with particular emphasis on regulation, including the complex mechanisms for the maintenance of GA homoeostasis.
Assuntos
Giberelinas/biossíntese , Plantas/metabolismo , Meio Ambiente , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Homeostase , Desenvolvimento Vegetal , Plantas/genéticaRESUMO
BACKGROUND: Sugar beet (Beta vulgaris sp. vulgaris) crops account for about 30% of world sugar. Sugar yield is compromised by reproductive growth hence crops must remain vegetative until harvest. Prolonged exposure to cold temperature (vernalization) in the range 6 °C to 12 °C induces reproductive growth, leading to bolting (rapid elongation of the main stem) and flowering. Spring cultivation of crops in cool temperate climates makes them vulnerable to vernalization and hence bolting, which is initiated in the apical shoot meristem in processes involving interaction between gibberellin (GA) hormones and vernalization. The underlying mechanisms are unknown and genome scale next generation sequencing approaches now offer comprehensive strategies to investigate them; enabling the identification of novel targets for bolting control in sugar beet crops. In this study, we demonstrate the application of an mRNA-Seq based strategy for this purpose. RESULTS: There is no sugar beet reference genome, or public expression array platforms. We therefore used RNA-Seq to generate the first reference transcriptome. We next performed digital gene expression profiling using shoot apex mRNA from two sugar beet cultivars with and without applied GA, and also a vernalized cultivar with and without applied GA. Subsequent bioinformatics analyses identified transcriptional changes associated with genotypic difference and experimental treatments. Analysis of expression profiles in response to vernalization and GA treatment suggested previously unsuspected roles for a RAV1-like AP2/B3 domain protein in vernalization and efflux transporters in the GA response. CONCLUSIONS: Next generation RNA-Seq enabled the generation of the first reference transcriptome for sugar beet and the study of global transcriptional responses in the shoot apex to vernalization and GA treatment, without the need for a reference genome or established array platforms. Comprehensive bioinformatic analysis identified transcriptional programmes associated with different sugar beet genotypes as well as biological treatments; thus providing important new opportunities for basic scientists and sugar beet breeders. Transcriptome-scale identification of agronomically important traits as used in this study should be widely applicable to all crop plants where genomic resources are limiting.
Assuntos
Beta vulgaris/genética , Temperatura Baixa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Transcriptoma , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes , Genótipo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Brotos de Planta/genética , RNA Mensageiro/química , RNA de Plantas/química , Análise de Sequência de RNARESUMO
Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA29 but negatively correlated with that of GA19. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development.
Assuntos
Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Vigor Híbrido/genética , Oryza/genética , Oryza/metabolismo , Plântula/genética , Transdução de Sinais/genética , Biomassa , Cruzamentos Genéticos , Genes de Plantas/genética , Germinação/genética , Giberelinas/genética , Hibridização Genética , Redes e Vias Metabólicas/genética , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plântula/metabolismo , Sementes/genética , Sementes/metabolismoRESUMO
Reactivation of dormant meristems is of central importance for plant fitness and survival. Due to their large meristem size, potato (Solanum tuberosum) tubers serve as a model system to study the underlying molecular processes. The phytohormones cytokinins (CK) and gibberellins (GA) play important roles in releasing potato tuber dormancy and promoting sprouting, but their mode of action in these processes is still obscure. Here, we established an in vitro assay using excised tuber buds to study the dormancy-releasing capacity of GA and CK and show that application of gibberellic acid (GA(3)) is sufficient to induce sprouting. In contrast, treatment with 6-benzylaminopurine induced bud break but did not support further sprout growth unless GA(3) was administered additionally. Transgenic potato plants expressing Arabidopsis (Arabidopsis thaliana) GA 20-oxidase or GA 2-oxidase to modify endogenous GA levels showed the expected phenotypical changes as well as slight effects on tuber sprouting. The isopentenyltransferase (IPT) from Agrobacterium tumefaciens and the Arabidopsis cytokinin oxidase/dehydrogenase1 (CKX) were exploited to modify the amounts of CK in transgenic potato plants. IPT expression promoted earlier sprouting in vitro. Strikingly, CKX-expressing tubers exhibited a prolonged dormancy period and did not respond to GA(3). This supports an essential role of CK in terminating tuber dormancy and indicates that GA is not sufficient to break dormancy in the absence of CK. GA(3)-treated wild-type and CKX-expressing tuber buds were subjected to a transcriptome analysis that revealed transcriptional changes in several functional groups, including cell wall metabolism, cell cycle, and auxin and ethylene signaling, denoting events associated with the reactivation of dormant meristems.