Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chromatogr A ; 1722: 464873, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38626540

RESUMO

3D printing offers the unprecedented ability to fabricate chromatography stationary phases with bespoke 3D morphology as opposed to traditional packed beds of spherical beads. The restricted range of printable materials compatible with chromatography is considered a setback for its industrial implementation. Recently, we proposed a novel ink that exhibits favourable printing performance (printing time ∼100 mL/h, resolution ∼200 µm) and broadens the possibilities for a range of chromatography applications thanks to its customisable surface chemistry. In this work, this ink was used to fabricate 3D printed ordered columns with 300 µm channels for the capture and polishing of therapeutic monoclonal antibodies. The columns were initially assessed for leachables and extractables, revealing no material propensity for leaching. Columns were then functionalised with protein A and SO3 ligands to obtain affinity and strong cation exchangers, respectively. 3D printed protein A columns showed >85 % IgG recovery from harvested cell culture fluid with purities above 98 %. Column reusability was evaluated over 20 cycles showing unaffected performance. Eluate samples were analysed for co-eluted protein A fragments, host cell protein and aggregates. Results demonstrate excellent HCP clearance (logarithmic reduction value of > 2.5) and protein A leakage in the range of commercial affinity resins (<100 ng/mg). SO3 functionalised columns employed for polishing achieved removal of leaked Protein A (down to 10 ng/mg) to meet regulatory expectations of product purity. This work is the first implementation of 3D printed columns for mAb purification and provides strong evidence for their potential in industrial bioseparations.


Assuntos
Anticorpos Monoclonais , Cricetulus , Imunoglobulina G , Impressão Tridimensional , Proteína Estafilocócica A , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/química , Proteína Estafilocócica A/química , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/química , Células CHO , Cromatografia de Afinidade/métodos , Animais , Cromatografia por Troca Iônica/métodos , Tinta
2.
Biotechnol Prog ; : e3456, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494903

RESUMO

Biopharmaceutical manufacture is transitioning from batch to integrated and continuous biomanufacturing (ICB). The common framework for most ICB, potentially enables a global biomanufacturing ecosystem utilizing modular and multi-function manufacturing equipment. Integrating unit operation hardware and software from multiple suppliers, complex supply chains enabled by multiple customized single-use flow paths, and large volume buffer production/storage make this ICB vision difficult to achieve with commercially available manufacturing equipment. Thus, we developed SymphonX™, a downstream processing skid with advanced buffer management capabilities, a single disposable generic flow path design that provides plug-and-play flexibility across all downstream unit operations and a single interface to reduce operational risk. Designed for multi-product and multi-process cGMP facilities, SymphonX™ can perform stand-alone batch processing or ICB. This study utilized an Apollo™ X CHO-DG44 mAb-expressing cell line in a steady-state perfusion bioreactor, harvesting product continuously with a cell retention device and connected SymphonX™ purification skids. The downstream process used the same chemistry (resins, buffer composition, membrane composition) as our historical batch processing platform, with SymphonX™ in-line conditioning and buffer concentrates. We used surge vessels between unit operations, single-column chromatography (protein A, cation and anion exchange) and two-tank batch virus inactivation. After the first polishing step (cation exchange), we continuously pooled product for 6 days. These 6 day pools were processed in batch-mode from anion exchange to bulk drug substance. This manufacturing scale proof-of-concept ICB produced 0.54 kg/day of drug substance with consistent product quality attributes and demonstrated successful bioburden control for unit-operations undergoing continuous operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA