Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(13): e2200271, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35481675

RESUMO

Endovascular treatment of aortic disorders has gained wide acceptance due to reduced physiological burden to the patient compared to open surgery, and ongoing stent-graft evolution has made aortic repair an option for patients with more complex anatomies. To date, commercial stent-grafts are typically developed from established production techniques with simple design structures and limited material ranges. Despite the numerous updated versions of stent-grafts by manufacturers, the reoccurrence of device-related complications raises questions about whether the current manfacturing methods are technically able to eliminate these problems. The technology trend to produce efficient medical devices, including stent-grafts and all similar implants, should eventually change direction to advanced manufacturing techniques. It is expected that through recent advancements, especially the emergence of 4D-printing and smart materials, unprecedented features can be defined for cardiovascular medical implants, like shape change and remote battery-free self-monitoring. 4D-printing technology promises adaptive functionality, a highly desirable feature enabling printed cardiovascular implants to physically transform with time to perform a programmed task. This review provides a thorough assessment of the established technologies for existing stent-grafts and provides technical commentaries on known failure modes. They then discuss the future of advanced technologies and the efforts needed to produce next-generation endovascular implants.


Assuntos
Implante de Prótese Vascular , Procedimentos Endovasculares , Prótese Vascular , Humanos , Desenho de Prótese , Stents , Resultado do Tratamento
2.
J Mater Chem B ; 9(10): 2532-2546, 2021 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-33660730

RESUMO

Finding the right balance in mechanical properties and degradation rate of biodegradable materials for biomedical applications is challenging, not only at the time of implantation but also during biodegradation. For instance, high elongation at break and toughness with a mid-term degradation rate are required for tendon scaffold or suture application, which cannot be found in each alpha polyester individually. Here, we hypothesise that blending semi-crystalline poly(p-dioxanone) (PDO) and poly(lactide-co-caprolactone) (LCL) in a specific composition will enhance the toughness while also enabling tailored degradation times. Hence, blends of PDO and LCL (PDO/LCL) were prepared in varying concentrations and formed into films by solvent casting. We thoroughly characterised the chemical, thermal, morphological, and mechanical properties of the new blends before and during hydrolytic degradation. Cellular performance was determined by seeding mouse fibroblasts onto the samples and culturing for 72 hours, before using proliferation assays and confocal imaging. We found that an increase in LCL content causes a decrease in hydrolytic degradation rate, as indicated by induced crystallinity, surface and bulk erosions, and tensile properties. Interestingly, the noncytotoxic blend containing 30% PDO and 70% LCL (PDO3LCL7) resulted in small PDO droplets uniformly dispersed within the LCL matrix and demonstrated a tailored degradation rate and toughening behaviour with a notable strain-hardening effect reaching 320% elongation at break; over 3 times the elongation of neat LCL. In summary, this work highlights the potential of PDO3LCL7 as a biomaterial for biomedical applications like tendon tissue engineering or high-performance absorbable sutures.


Assuntos
Materiais Biocompatíveis/química , Dioxanos/química , Poliésteres/química , Polímeros/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular , Proliferação de Células , Fibroblastos/citologia , Fibroblastos/metabolismo , Congelamento , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligamentos , Camundongos , Temperatura , Tendões , Resistência à Tração , Fatores de Tempo
3.
J Mech Behav Biomed Mater ; 81: 95-105, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29500982

RESUMO

In this study, injection molding process of ultrahigh molecular weight polyethylene (UHMWPE) reinforced with nano-hydroxyapatite (nHA) was simulated and optimized through minimizing the shrinkage and warpage of the hip liners as an essential part of a hip prosthesis. Fractional factorial design (FFD) was applied to the design of the experiment, modeling, and optimizing the shrinkage and warpage of UHMWPE/nHA composite liners. The Analysis of variance (ANOVA) was applied to find the importance of operative parameters and their effects. In this experiment, seven input parameters were surveyed, including mold temperature (A), melt temperature (B), injection time (C), packing time (D), packing pressure (E), coolant temperature (F), and type of liner (G). Two models were capable of predicting warpage and volumetric shrinkage (%) in different conditions with R2 of 0.9949 and 0.9989, respectively. According to the models, the optimized values of warpage and volumetric shrinkage are 0.287222 mm and 13.6613%, respectively. Meanwhile, a finite element analysis (FE analysis) was also carried out to examine the stress distribution in liners under the force values of demanding and daily activities. The Von-Mises stress distribution showed that both of the liners can be applied to all activities with no failure. However, UHMWPE/nHA liner is more resistant to the highest loads than UHMWPE liner due to the effect of nHA in the nanocomposite. Finally, according to the results of injection molding simulations, optimization, structural analysis as well as the tensile strength and wear resistance, UHMWPE/nHA liner is recommended for the production of a hip prosthesis.


Assuntos
Prótese de Quadril , Fenômenos Mecânicos , Nanocompostos , Nanotecnologia/métodos , Polietilenos , Teste de Materiais , Movimento , Desenho de Prótese
4.
J Mech Behav Biomed Mater ; 65: 160-176, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27572233

RESUMO

In this study, injection molding of three poly lactic acid (PLA) based bone screws was simulated and optimized through minimizing the shrinkage and warpage of the bone screws. The optimization was carried out by investigating the process factors such as coolant temperature, mold temperature, melt temperature, packing time, injection time, and packing pressure. A response surface methodology (RSM), based on the central composite design (CCD), was used to determine the effects of the process factors on the PLA based bone screws. Upon applying the method of maximizing the desirability function, optimization of the factors gave the lowest warpage and shrinkage for nanocomposite PLA bone screw (PLA9). Moreover, PLA9 has the greatest desirability among the selected materials for bone screw injection molding. Meanwhile, a finite element analysis (FE analysis) was also performed to determine the force values and concentration points which cause yielding of the screws under certain conditions. The Von-Mises stress distribution showed that PLA9 screw is more resistant against the highest loads as compared to the other ones. Finally, according to the results of injection molding simulations, the design of experiments (DOE) and structural analysis, PLA9 screw is recommended as the best candidate for the production of biomedical materials among all the three types of screws.


Assuntos
Antibacterianos/análise , Parafusos Ósseos , Nanocompostos/análise , Poliésteres/análise , Análise de Elementos Finitos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA