Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav Immun ; 120: 304-314, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38852760

RESUMO

Acamprosate is a Food and Drug Administration (FDA) approved medication for the treatment of alcohol use disorder (AUD). However, only a subset of patients achieves optimal treatment outcomes. Currently, no biological measures are utilized to predict response to acamprosate treatment. We applied our established pharmaco-omics informed genomics strategy to identify potential biomarkers associated with acamprosate treatment response. Specifically, our previous open-label acamprosate clinical trial recruited 442 patients with AUD who were treated with acamprosate for three months. We first performed proteomics using baseline plasma samples to identify potential biomarkers associated with acamprosate treatment outcomes. Next, we applied our established "proteomics-informed genome-wide association study (GWAS)" research strategy, and identified 12 proteins, including interleukin-17 receptor B (IL17RB), associated with acamprosate treatment response.​ A GWAS for IL17RB concentrations identified several genome-wide significant signals. Specifically, the top hit single nucleotide polymorphism (SNP) rs6801605 with a minor allele frequency of 38% in the European American population mapped 4 kilobase (Kb) upstream of IL17RB, and intron 1 of the choline dehydrogenase (CHDH) gene on chromosome 3 (p: 4.8E-20). The variant genotype (AA) for the SNP rs6801605 was associated with lower IL17RB protein expression. In addition, we identified a series of genetic variants in IL17RB that were associated with acamprosate treatment outcomes. Furthermore, the variantgenotypes for all of those IL17RB SNPs were protective for alcohol relapse. Finally, we demonstrated that the basal level of mRNA expression of IL17RB was inversely correlated with those of nuclear factor-κB (NF-κB) subunits, and a significantly higher expression of NF-κB subunits was observed in AUD patients who relapsed to alcohol use. In summary, this study illustrates that IL17RB genetic variants might contribute to acamprosate treatment outcomes. This series of studies represents an important step toward generating functional hypotheses that could be tested to gain insight into mechanisms underlying acamprosate treatment response phenotypes. (The ClinicalTrials.gov Identifier: NCT00662571).

2.
Nucleic Acid Ther ; 29(3): 126-135, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30855209

RESUMO

We previously reported the in vitro selection and characterization of a DNA aptamer capable of stimulating remyelination in a mouse model of multiple sclerosis. This aptamer was selected for its ability to bind to suspensions of crude murine myelin in vitro. Our initial studies in vitro and in vivo involved a 40-nucleotide derivative (LJM-3064) of the original 100-nucleotide aptamer. LJM-3064 retained robust myelin-binding properties. Structural characterization of LJM-3064 revealed that the guanosine-rich 5' half of the sequence forms different G-quadruplex-type structures that are variably stable in the presence of physiologically relevant ions. We hypothesized that this structured domain is sufficient for myelin binding. In this study, we confirm that a 20-nucleotide DNA, corresponding to the 5' half of LJM-3064, retains myelin-binding properties. We then optimize this minimal myelin-binding aptamer via systematic evolution of ligands by exponential enrichment after sparse rerandomization. We report a sequence variant (LJM-5708) of the 20-nucleotide myelin-binding aptamer with enhanced myelin-binding properties and the ability to bind cultured human oligodendroglioma cells in vitro, providing the first evidence of cross-species reactivity of this myelin-binding aptamer. As our formulation of DNA aptamers for in vivo remyelination therapy involves conjugation to streptavidin, we verified that the myelin-binding properties of LJM-5708 were retained in conjugates to avidin, streptavidin, and neutravidin. DNA aptamer LJM-5708 is a lead for further preclinical development of remyelinating aptamer technologies.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Animais , Dicroísmo Circular , Quadruplex G , Humanos , Camundongos , Esclerose Múltipla/genética , Oligodendroglioma/tratamento farmacológico , Oligodendroglioma/patologia , Ligação Proteica/efeitos dos fármacos , Técnica de Seleção de Aptâmeros , Estreptavidina/química
3.
Expert Opin Biol Ther ; 18(5): 545-560, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460650

RESUMO

INTRODUCTION: Multiple sclerosis (MS) is a chronic and progressive inflammatory demyelinating disease of the human central nervous system (CNS) and is the most common disabling neurological condition in young adults, resulting in severe neurological defects. No curative or long-term progression-inhibiting therapy has yet been developed. However, recent investigation has revealed potential strategies that do not merely modulate potentially pathogenic autoimmune responses, but stimulate remyelination within CNS lesions. AREAS COVERED: We discuss the history and development of natural human IgM-isotype immunoglobulins (HIgMs) and recently-identified aptamer-conjugates that have been shown to enhance endogenous myelin repair in animal models of demyelination by acting on myelin-producing oligodendrocytes (OLs) or oligodendrocyte progenitor cells (OPCs) within CNS lesions. We also discuss future development aims and applications for these important novel technologies. EXPERT OPINION: Aptamer conjugate Myaptavin-3064 and recombinant human IgM-isotype antibody rHIgM22 regenerate CNS myelin, thereby reducing axonal degeneration and offering the potential of recovery from MS relapses, reversal of disability and prevention of disease progression. Advancement of these technologies into the clinic for MS treatment is therefore a top priority. It remains unclear to what extent the therapeutic modalities of remyelinating antibodies and aptamers may synergize with other currently-approved therapies to yield enhanced therapeutic effects.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Produtos Biológicos/uso terapêutico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Imunoconjugados/uso terapêutico , Remielinização/efeitos dos fármacos , Adulto , Animais , Aptâmeros de Peptídeos/uso terapêutico , Doenças Desmielinizantes/tratamento farmacológico , Humanos , Esclerose Múltipla/tratamento farmacológico , Regeneração/efeitos dos fármacos , Remielinização/fisiologia , Adulto Jovem
4.
Mol Ther Methods Clin Dev ; 9: 270-277, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29707601

RESUMO

Multiple sclerosis (MS) is a debilitating disease for which regenerative therapies are sought. We have previously described human antibodies and DNA aptamer-streptavidin conjugates that promote remyelination after systemic injection into mice infected by Theiler's murine encephalomyelitis virus. Here, we report an in vitro assay of myelin binding with results that correlate with remyelination outcome in vivo, as shown for data from a set of DNA aptamer complexes of different size and formulation. This in vitro assay will be valuable for future screening of MS regenerative therapies targeting remyelination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA