Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 65(2): 100504, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38246237

RESUMO

Coronary atherosclerosis is caused by plaque build-up, with lipids playing a pivotal role in its progression. However, lipid composition and distribution within coronary atherosclerosis remain unknown. This study aims to characterize lipids and investigate differences in lipid composition across disease stages to aid in the understanding of disease progression. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to visualize lipid distributions in coronary artery sections (n = 17) from hypercholesterolemic swine. We performed histology on consecutive sections to classify the artery segments and to investigate colocalization between lipids and histological regions of interest in advanced plaque, including necrotic core and inflammatory cells. Segments were classified as healthy (n = 6), mild (n = 6), and advanced disease (n = 5) artery segments. Multivariate data analysis was employed to find differences in lipid composition between the segment types, and the lipids' spatial distribution was investigated using non-negative matrix factorization (NMF). Through this process, MALDI-MSI detected 473 lipid-related features. NMF clustering described three components in positive ionization mode: triacylglycerides (TAG), phosphatidylcholines (PC), and cholesterol species. In negative ionization mode, two components were identified: one driven by phosphatidylinositol(PI)(38:4), and one driven by ceramide-phosphoethanolamine(36:1). Multivariate data analysis showed the association between advanced disease and specific lipid signatures like PC(O-40:5) and cholesterylester(CE)(18:2). Ether-linked phospholipids and LysoPC species were found to colocalize with necrotic core, and mostly CE, ceramide, and PI species colocalized with inflammatory cells. This study, therefore, uncovers distinct lipid signatures correlated with plaque development and their colocalization with necrotic core and inflammatory cells, enhancing our understanding of coronary atherosclerosis progression.


Assuntos
Doença da Artéria Coronariana , Hiperlipoproteinemia Tipo II , Placa Aterosclerótica , Animais , Suínos , Lipidômica , Ceramidas , Necrose , Fosfatidilcolinas , Éteres Fosfolipídicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Chem Rev ; 122(20): 15865-15913, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797639

RESUMO

Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.


Assuntos
Glicômica , Polissacarídeos , Glicômica/métodos , Glicosilação , Polissacarídeos/química
3.
J Lipid Res ; 64(8): 100416, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37467896

RESUMO

Acute kidney injury (AKI) is a global public health concern with high mortality and morbidity. In ischemic-reperfusion injury (IRI), a main cause of AKI, the brush border membrane of S3 proximal tubules (PT) is lost to the tubular lumen. How injured tubules reconstitute lost membrane lipids during renal recovery is not known. Here, we identified Mfsd2a, a sodium-dependent lysophosphatidylcholine (LPC) transporter, to be expressed specifically in the basolateral membrane of S3 PT. Using an in vivo activity probe for Mfsd2a, transport activity was found to be specific to the S3 PT. Mice with haploinsufficiency of Mfsd2a exhibited delayed recovery of renal function after acute IRI, with depressed urine osmolality and elevated levels of histological markers of damage, fibrosis, and inflammation, findings corroborated by transcriptomic analysis. Lipidomics revealed a deficiency in docosahexaenoic acid (DHA) containing phospholipids in Mfsd2a haploinsufficiency. Treatment of Mfsd2a haploinsufficient mice with LPC-DHA improved renal function and reduced markers of injury, fibrosis, and inflammation. Additionally, LPC-DHA treatment restored S3 brush border membrane architecture and normalized DHA-containing phospholipid content. These findings indicate that Mfsd2a-mediated transport of LPC-DHA is limiting for renal recovery after AKI and suggest that LPC-DHA could be a promising dietary supplement for improving recovery following AKI.


Assuntos
Injúria Renal Aguda , Simportadores , Camundongos , Animais , Proteínas de Membrana Transportadoras , Ácidos Docosa-Hexaenoicos , Fosfolipídeos , Rim/fisiologia
4.
Mol Cell Proteomics ; 20: 100057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581319

RESUMO

The choice for adjuvant chemotherapy in stage II colorectal cancer is controversial as many patients are cured by surgery alone and it is difficult to identify patients with high risk of recurrence of the disease. There is a need for better stratification of this group of patients. Mass spectrometry imaging could identify patients at risk. We report here the N-glycosylation signatures of the different cell populations in a group of stage II colorectal cancer tissue samples. The cancer cells, compared with normal epithelial cells, have increased levels of sialylation and high-mannose glycans, as well as decreased levels of fucosylation and highly branched N-glycans. When looking at the interface between cancer and its microenvironment, it seems that the cancer N-glycosylation signature spreads into the surrounding stroma at the invasive front of the tumor. This finding was more outspoken in patients with a worse outcome within this sample group.


Assuntos
Neoplasias Colorretais/metabolismo , Microambiente Tumoral , Idoso , Idoso de 80 Anos ou mais , Colo/metabolismo , Neoplasias Colorretais/patologia , Feminino , Glicômica , Glicosilação , Humanos , Mucosa Intestinal/metabolismo , Masculino , Manose/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Polissacarídeos/metabolismo , Prognóstico
5.
J Lipid Res ; 62: 100020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581415

RESUMO

Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids, and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of >90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, whereas diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear colocalization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques.


Assuntos
Doenças das Artérias Carótidas
6.
Bioinformatics ; 36(11): 3618-3619, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108859

RESUMO

SUMMARY: Mass spectrometry imaging (MSI) can reveal biochemical information directly from a tissue section. MSI generates a large quantity of complex spectral data which is still challenging to translate into relevant biochemical information. Here, we present rMSIproc, an open-source R package that implements a full data processing workflow for MSI experiments performed using TOF or FT-based mass spectrometers. The package provides a novel strategy for spectral alignment and recalibration, which allows to process multiple datasets simultaneously. This enables to perform a confident statistical analysis with multiple datasets from one or several experiments. rMSIproc is designed to work with files larger than the computer memory capacity and the algorithms are implemented using a multi-threading strategy. rMSIproc is a powerful tool able to take full advantage of modern computer systems to completely develop the whole MSI potential. AVAILABILITY AND IMPLEMENTATION: rMSIproc is freely available at https://github.com/prafols/rMSIproc. CONTACT: pere.rafols@urv.cat. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Sistemas Computacionais , Espectrometria de Massas , Fluxo de Trabalho
7.
Lab Invest ; 100(9): 1252-1261, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32341520

RESUMO

Myxoid liposarcoma (MLS) is the second most common subtype of liposarcoma, accounting for ~6% of all sarcomas. MLS is characterized by a pathognomonic FUS-DDIT3, or rarely EWSR1-DDIT3, gene fusion. The presence of ≥5% hypercellular round cell areas is associated with a worse prognosis for the patient and is considered high grade. The prognostic significance of areas with moderately increased cellularity (intermediate) is currently unknown. Here we have applied matrix-assisted laser desorption/ionization mass spectrometry imaging to analyze the spatial distribution of N-linked glycans on an MLS microarray in order to identify molecular markers for tumor progression. Comparison of the N-glycan profiles revealed that increased relative abundances of high-mannose type glycans were associated with tumor progression. Concomitantly, an increase of the average number of mannoses on high-mannose glycans was observed. Although overall levels of complex-type glycans decreased, an increase of tri- and tetra-antennary N-glycans was observed with morphological tumor progression and increased tumor histological grade. The high abundance of tri-antennary N-glycan species was also associated with poor disease-specific survival. These findings mirror recent observations in colorectal cancer, breast cancer, ovarian cancer, and cholangiocarcinoma, and are in line with a general role of high-mannose glycans and higher-antennary complex-type glycans in cancer progression.


Assuntos
Lipossarcoma Mixoide/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Lipossarcoma Mixoide/genética , Lipossarcoma Mixoide/patologia , Masculino , Gradação de Tumores , Proteínas de Fusão Oncogênica/genética , Proteínas Repressoras/genética
8.
Anal Chem ; 92(20): 13904-13911, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32975931

RESUMO

N-glycans are important players in a variety of pathologies including different types of cancer, (auto)immune diseases, and also viral infections. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an important tool for high-throughput N-glycan profiling and, upon use of tandem MS, for structure determination. By use of MALDI-MS imaging (MSI) in combination with PNGase F treatment, also spatially correlated N-glycan profiling from tissue sections becomes possible. Here we coupled laser-induced postionization, or MALDI-2, to a trapped ion mobility quadrupole time-of-flight mass spectrometer (timsTOF fleX MALDI-2, Bruker Daltonics). We demonstrate that with MALDI-2 the sensitivity for the detection of molecular [M - H]- species of N-glycans increased by about 3 orders of magnitude. Compared to the current gold standard, the positive ion mode analysis of [M + Na]+ adducts, a sensitivity increase by about a factor of 10 is achieved. By exploiting the advantageous fragmentation behavior of [M - H]- ions, exceedingly rich structural information on the composition of complex N-glycans was moreover obtained directly from thin tissue sections of human cerebellum and upon use of low-energy collision-induced dissociation tandem MS. In another set of experiments, in this case by use of a modified Synapt G2-S QTOF mass spectrometer (Waters), we investigated the influence of relevant input parameters, in particular pressure of the N2 cooling gas in the ion source, delay between the two laser pulses, and that of their pulse energies. In this way, analytical conditions were identified at which molecular ion abundances were maximized and fragmentation reactions minimized. The use of negative ion mode MALDI-2-MSI could constitute a valuable tool in glycobiology research.


Assuntos
Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Íons/química , Masculino , Polissacarídeos/química , Razão Sinal-Ruído
9.
Anal Chem ; 92(13): 8697-8703, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32449347

RESUMO

Matrix-assisted laser desorption/ionization combined with laser-induced postionization (MALDI-2) is a recently introduced method for enhanced mass spectrometry imaging of numerous classes of biomolecules, including phospho- and glycolipids in tissue sections at high lateral resolution. Here we describe the first adaptation of the technology to a Bruker timsTOF fleX mass spectrometer. Upon use of a 1 kHz postionization laser, MALDI-2 produces a sizable increase in the number of detected features as well as in ion signal intensities. This enhancement is similar to that described previously for low repetition rate MALDI-2 systems, but now enables substantially enhanced measurement speeds. In our proof-of-concept study, we furthermore demonstrate, on examples of rat brain and testis tissue sections, that the combination of MALDI-2 with the trapped ion mobility spectrometry (TIMS) functionality of the instrument can crucially support unravelling the complex molecular composition of the lipidome. Numerous isomeric/isobaric ion species are successfully separated upon using the collisional cross section (CCS) as additional specific physical property. With the possibilities of high data acquisition speed or high separation powers in combination with the increased sensitivity of MALDI-2 available in one instrument, the described methodology could be a valuable tool in many areas of biological and medical research.


Assuntos
Lipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/metabolismo , Espectrometria de Mobilidade Iônica , Lipídeos/química , Masculino , Ratos , Testículo/metabolismo
10.
J Inherit Metab Dis ; 43(6): 1265-1278, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32557630

RESUMO

Sjögren-Larsson syndrome (SLS) is a rare neurometabolic syndrome caused by deficient fatty aldehyde dehydrogenase. Patients exhibit intellectual disability, spastic paraplegia, and ichthyosis. The accumulation of fatty alcohols and fatty aldehydes has been demonstrated in plasma and skin but never in brain. Brain magnetic resonance imaging and spectroscopy studies, however, have shown an abundant lipid peak in the white matter of patients with SLS, suggesting lipid accumulation in the brain as well. Using histopathology, mass spectrometry imaging, and lipidomics, we studied the morphology and the lipidome of a postmortem brain of a 65-year-old female patient with genetically confirmed SLS and compared the results with a matched control brain. Histopathological analyses revealed structural white matter abnormalities with the presence of small lipid droplets, deficient myelin, and astrogliosis. Biochemically, severely disturbed lipid profiles were found in both white and gray matter of the SLS brain, with accumulation of fatty alcohols and ether lipids. Particularly, long-chain unsaturated ether lipid species accumulated, most prominently in white matter. Also, there was a striking accumulation of odd-chain fatty alcohols and odd-chain ether(phospho)lipids. Our results suggest that the central nervous system involvement in SLS is caused by the accumulation of fatty alcohols leading to a disbalance between ether lipid and glycero(phospho)lipid metabolism resulting in a profoundly disrupted brain lipidome. Our data show that SLS is not a pure leukoencephalopathy, but also a gray matter disease. Additionally, the histopathological abnormalities suggest that astrocytes and microglia might play a pivotal role in the underlying disease mechanism, possibly contributing to the impairment of myelin maintenance.


Assuntos
Encéfalo/metabolismo , Éteres/metabolismo , Álcoois Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Síndrome de Sjogren-Larsson/metabolismo , Idoso , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Síndrome de Sjogren-Larsson/patologia
11.
Kidney Blood Press Res ; 45(2): 233-248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32062660

RESUMO

INTRODUCTION: Diabetic nephropathy (DN) and hypertensive nephrosclerosis (HN) represent the most common causes of chronic kidney disease (CKD) and many patients progress to -end-stage renal disease. Patients are treated primarily through the management of cardiovas-cular risk factors and hypertension; however patients with HN have a more favorable outcome. A noninvasive clinical approach to separate these two entities, especially in hypertensive patients who also have diabetes, would allow for targeted treatment and more appropriate resource allocation to those patients at the highest risk of CKD progression. Meth-ods: In this preliminary study, high-spatial-resolution matrix-assisted laser desorption/ion-ization (MALDI) mass spectrometry imaging (MSI) was integrated with high-mass accuracy MALDI-FTICR-MS and nLC-ESI-MS/MS analysis in order to detect tissue proteins within kidney biopsies to discriminate cases of DN (n = 9) from cases of HN (n = 9). RESULTS: Differences in the tryptic peptide profiles of the 2 groups could clearly be detected, with these becoming even more evident in the more severe histological classes, even if this was not evident with routine histology. In particular, 4 putative proteins were detected and had a higher signal intensity within regions of DN tissue with extensive sclerosis or fibrosis. Among these, 2 proteins (PGRMC1 and CO3) had a signal intensity that increased at the latter stages of the disease and may be associated with progression. DISCUSSION/CONCLUSION: This preliminary study represents a valuable starting point for a future study employing a larger cohort of patients to develop sensitive and specific protein biomarkers that could reliably differentiate between diabetic and hypertensive causes of CKD to allow for improved diagnosis, fewer biopsy procedures, and refined treatment approaches for clinicians.


Assuntos
Nefropatias Diabéticas/diagnóstico por imagem , Hipertensão Renal/diagnóstico por imagem , Nefrite/diagnóstico por imagem , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Expert Rev Proteomics ; 15(9): 709-716, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30203995

RESUMO

INTRODUCTION: Mass spectrometry imaging (MSI) is a label free, multiplex imaging technology able to simultaneously record the distributions of 100's to 1000's of species, and which may be configured to study metabolites, lipids, glycans, peptides, and proteins simply by changing the tissue preparation protocol. Areas covered: The capability of MSI to complement established histopathological practice through the identification of biomarkers for differential diagnosis, patient prognosis, and response to therapy; the capability of MSI to annotate tissues on the basis of each pixel's mass spectral signature; the development of reproducible MSI through multicenter studies. Expert commentary: We discuss how MSI can be combined with microsampling/microdissection technologies in order to investigate, with more depth of coverage, the molecular changes uncovered by MSI.


Assuntos
Pesquisa Biomédica , Imageamento Tridimensional , Espectrometria de Massas , Animais , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/patologia
13.
Anal Bioanal Chem ; 410(23): 5969-5980, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29968108

RESUMO

Mass spectrometry imaging (MSI) has provided many results with translational character, which still have to be proven robust in large patient cohorts and across different centers. Although formalin-fixed paraffin-embedded (FFPE) specimens are most common in clinical practice, no MSI multicenter study has been reported for FFPE samples. Here, we report the results of the first round robin MSI study on FFPE tissues with the goal to investigate the consequences of inter- and intracenter technical variation on masking biological effects. A total of four centers were involved with similar MSI instrumentation and sample preparation equipment. A FFPE multi-organ tissue microarray containing eight different types of tissue was analyzed on a peptide and metabolite level, which enabled investigating different molecular and biological differences. Statistical analyses revealed that peptide intercenter variation was significantly lower and metabolite intercenter variation was significantly higher than the respective intracenter variations. When looking at relative univariate effects of mass signals with statistical discriminatory power, the metabolite data was more reproducible across centers compared to the peptide data. With respect to absolute effects (cross-center common intensity scale), multivariate classifiers were able to reach on average > 90% accuracy for peptides and > 80% for metabolites if trained with sufficient amount of cross-center data. Overall, our study showed that MSI data from FFPE samples could be reproduced to a high degree across centers. While metabolite data exhibited more reproducibility with respect to relative effects, peptide data-based classifiers were more directly transferable between centers and therefore more robust than expected. Graphical abstract ᅟ.


Assuntos
Espectrometria de Massas , Metabolômica , Inclusão em Parafina , Peptídeos/análise , Análise Serial de Tecidos , Fixação de Tecidos , Animais , Formaldeído/química , Espectrometria de Massas/métodos , Metabolômica/métodos , Camundongos , Inclusão em Parafina/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Análise Serial de Tecidos/métodos , Fixação de Tecidos/métodos
14.
Anal Chem ; 88(15): 7745-53, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27373711

RESUMO

On-tissue digestion matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can be used to record spatially correlated molecular information from formalin-fixed, paraffin-embedded (FFPE) tissue sections. In this work, we present the in situ multimodal analysis of N-linked glycans and proteins from the same FFPE tissue section. The robustness and applicability of the method are demonstrated for several tumors, including epithelial and mesenchymal tumor types. Major analytical aspects, such as lateral diffusion of the analyte molecules and differences in measurement sensitivity due to the additional sample preparation methods, have been investigated for both N-glycans and proteolytic peptides. By combining the MSI approach with extract analysis, we were also able to assess which mass spectral peaks generated by MALDI-MSI could be assigned to unique N-glycan and peptide identities.


Assuntos
Peptídeos/análise , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antígenos/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Glicoproteínas/metabolismo , Humanos , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Lipossarcoma Mixoide/metabolismo , Lipossarcoma Mixoide/patologia , Inclusão em Parafina , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Peptídeos/metabolismo , Polissacarídeos/metabolismo
15.
Anal Chem ; 88(11): 5904-13, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27145236

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging is a rapidly evolving field in which mass spectrometry techniques are applied directly on tissues to characterize the spatial distribution of various molecules such as lipids, protein/peptides, and recently also N-glycans. Glycans are involved in many biological processes and several glycan changes have been associated with different kinds of cancer, making them an interesting target group to study. An important analytical challenge for the study of glycans by MALDI mass spectrometry is the labile character of sialic acid groups which are prone to in-source/postsource decay, thereby biasing the recorded glycan profile. We therefore developed a linkage-specific sialic acid derivatization by dimethylamidation and subsequent amidation and transferred this onto formalin-fixed paraffin-embedded (FFPE) tissues for MALDI imaging of N-glycans. Our results show (i) the successful stabilization of sialic acids in a linkage specific manner, thereby not only increasing the detection range, but also adding biological meaning, (ii) that no noticeable lateral diffusion is induced during to sample preparation, (iii) the potential of mass spectrometry imaging to spatially characterize the N-glycan expression within heterogeneous tissues.


Assuntos
Formaldeído/química , Inclusão em Parafina , Polissacarídeos/química , Ácidos Siálicos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Configuração de Carboidratos
16.
J Proteome Res ; 14(12): 5348-54, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26544763

RESUMO

In mass spectrometry imaging (MSI), on-tissue proteolytic digestion is performed to access larger protein species and to assign protein identities through matching the detected peaks with those obtained by LC-MS/MS analyses of tissue extracts. The on-tissue proteolytic digestion also allows the analysis of proteins from formalin-fixed, paraffin-embedded tissues. For these reasons, on-tissue digestion-based MSI is frequently used in clinical investigations, for example, to determine changes in protein content and distribution associated with a disease. In this work, we sought to investigate the completeness and uniformity of the digestion in on-tissue digestion MSI. On the basis of an extensive experiment investigating three groups with varying incubation times: (i) 1.5 h, (ii) 3 h, and (iii) 18 h, we have found that longer incubation times improve the repeatability of the analyses. Furthermore, we discovered morphology-associated differences in the completeness of the proteolysis for short incubation times. These results support the notion that a more complete proteolysis allows better quantitation.


Assuntos
Química Encefálica , Encéfalo/anatomia & histologia , Proteínas do Tecido Nervoso/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/análise , Proteólise , Proteômica/métodos , Distribuição Tecidual
17.
Anal Chem ; 87(24): 11978-83, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26595321

RESUMO

Mass spectrometry imaging (MSI) is widely used for clinical research because when combined with histopathological analysis the molecular signatures of specific cells/regions can be extracted from the often-complex histologies of pathological tissues. The ability of MSI to stratify patients according to disease, prognosis, and response is directly attributable to this cellular specificity. MSI developments are increasingly focused on further improving specificity, through higher spatial resolution to better localize the signals or higher mass resolution to better resolve molecular ions. Higher spatial/mass resolution leads to increased data size and longer data acquisition times. For clinical applications, which analyze large series of patient tissues, this poses a challenge to keep data load and acquisition time manageable. Here we report a new tool to perform histology guided MSI; instead of analyzing large parts of each tissue section the histology from adjacent tissue sections is used to focus the analysis on the areas of interest, e.g., comparable cell types in different patient tissues, thereby minimizing data acquisition time and data load. The histology tissue section is annotated and then automatically registered to the MSI-prepared tissue section; the registration transformation is then applied to the annotations, enabling them to be used to define the MSI measurement regions. Using a series of formalin-fixed, paraffin-embedded human myxoid liposarcoma tissues, we demonstrate an 80% reduction of data load and acquisition time, thereby enabling high resolution (mass or spatial) to be more readily applied to clinical research. The software is freely available for download.


Assuntos
Técnicas Histológicas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Técnicas Histológicas/normas , Humanos , Lipossarcoma Mixoide/diagnóstico , Lipossarcoma Mixoide/patologia , Inclusão em Parafina , Reprodutibilidade dos Testes
18.
Anal Chem ; 87(3): 1867-75, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25535922

RESUMO

On-tissue enzymatic digestion is performed in mass spectrometry imaging (MSI) experiments to access larger proteins and to assign protein identities. Most on-tissue digestion MSI studies have focused on method development rather than identifying the molecular features observed. Herein, we report a comprehensive study of the mouse brain proteome sampled by MSI. Using complementary proteases, we were able to identify 5337 peptides in the matrix-assisted laser desorption/ionization (MALDI) matrix, corresponding to 1198 proteins. 630 of these peptides, corresponding to 280 proteins, could be assigned to peaks in MSI data sets. Gene ontology and pathway analyses revealed that many of the proteins are involved in neurodegenerative disorders, such as Alzheimer's, Parkinson's, and Huntington's disease.


Assuntos
Química Encefálica , Proteoma/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/metabolismo , Peptídeos/análise , Peptídeos/metabolismo , Proteoma/metabolismo
19.
Nat Commun ; 15(1): 3818, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740760

RESUMO

The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.


Assuntos
Rim , Preservação de Órgãos , Perfusão , Humanos , Rim/metabolismo , Preservação de Órgãos/métodos , Perfusão/métodos , Transplante de Rim , Masculino , Soluções para Preservação de Órgãos , Feminino , Pessoa de Meia-Idade , Sistema Livre de Células , Ciclo do Ácido Cítrico , Adulto , Nutrientes/metabolismo , Lipidômica/métodos , Idoso
20.
Methods Mol Biol ; 2688: 173-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37410293

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging with laser-induced postionization (MALDI-2-MSI) has proven a powerful tool for the in situ analysis of N-linked glycosylation, or N-glycans, directly from clinical tissue samples. Here we describe a sample preparation protocol for the analysis of N-glycans from formalin-fixed, paraffin-embedded tissue sections.


Assuntos
Diagnóstico por Imagem , Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Inclusão em Parafina , Polissacarídeos/química , Glicosilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA