Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 382(2266): 20230086, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38104623

RESUMO

Gravitational waveforms play a crucial role in comparing observed signals with theoretical predictions. However, obtaining accurate analytical waveforms directly from general relativity (GR) remains challenging. Existing methods involve a complex blend of post-Newtonian theory, effective-one-body formalism, numerical relativity and interpolation, introducing systematic errors. As gravitational wave astronomy advances with new detectors, these errors gain significance, particularly when testing GR in the nonlinear regime. A recent development proposes a novel approach to address this issue. By deriving precise constraints-or balance laws-directly from full nonlinear GR, this method offers a means to evaluate waveform quality, detect template weaknesses and ensure internal consistency. Before delving into the intricacies of balance laws in full nonlinear GR, we illustrate the concept using a detailed mechanical analogy. We will examine a dissipative mechanical system as an example, demonstrating how mechanical balance laws can gauge the accuracy of approximate solutions in capturing the complete physical scenario. While mechanical balance laws are straightforward, deriving balance laws in electromagnetism and GR demands a rigorous foundation rooted in mathematically precise concepts of radiation. Following the analogy with electromagnetism, we derive balance laws in GR. As a proof of concept, we employ an analytical approximate waveform model, showcasing how these balance laws serve as a litmus test for the model's validity. This article is part of the theme issue 'The particle-gravity frontier'.

2.
Exp Astron (Dordr) ; 51(3): 1385-1416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720415

RESUMO

Black holes are unique among astrophysical sources: they are the simplest macroscopic objects in the Universe, and they are extraordinary in terms of their ability to convert energy into electromagnetic and gravitational radiation. Our capacity to probe their nature is limited by the sensitivity of our detectors. The LIGO/Virgo interferometers are the gravitational-wave equivalent of Galileo's telescope. The first few detections represent the beginning of a long journey of exploration. At the current pace of technological progress, it is reasonable to expect that the gravitational-wave detectors available in the 2035-2050s will be formidable tools to explore these fascinating objects in the cosmos, and space-based detectors with peak sensitivities in the mHz band represent one class of such tools. These detectors have a staggering discovery potential, and they will address fundamental open questions in physics and astronomy. Are astrophysical black holes adequately described by general relativity? Do we have empirical evidence for event horizons? Can black holes provide a glimpse into quantum gravity, or reveal a classical breakdown of Einstein's gravity? How and when did black holes form, and how do they grow? Are there new long-range interactions or fields in our Universe, potentially related to dark matter and dark energy or a more fundamental description of gravitation? Precision tests of black hole spacetimes with mHz-band gravitational-wave detectors will probe general relativity and fundamental physics in previously inaccessible regimes, and allow us to address some of these fundamental issues in our current understanding of nature.

3.
Philos Trans A Math Phys Eng Sci ; 382(2266): 20230093, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38104619
4.
Living Rev Relativ ; 21(1): 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674941

RESUMO

Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

5.
Living Rev Relativ ; 16(1): 6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-29142500

RESUMO

Euclid is a European Space Agency medium-class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

6.
Eur Phys J C Part Fields ; 83(4): 315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155514

RESUMO

We derive the most general homogeneous and isotropic teleparallel geometries, defined by a metric and a flat, affine connection. We find that there are five branches of connection solutions, which are connected via several limits, and can further be restricted to the torsion-free and metric-compatible cases. We apply our results to several classes of general teleparallel gravity theories and derive their cosmological dynamics for all five branches. Our results show that for large subclasses of these theories the dynamics reduce to that of closely related metric or symmetric teleparallel gravity theories, while for other subclasses up to two new scalar degrees of freedom participate in the cosmological dynamics.

7.
Gen Relativ Gravit ; 54(1): 3, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221342

RESUMO

The science objectives of the LISA mission have been defined under the implicit assumption of a 4-years continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of ≈ 0.75 , which would reduce the effective span of usable data to 3 years. This paper reports the results of a study by the LISA Science Group, which was charged with assessing the additional science return of increasing the mission lifetime. We explore various observational scenarios to assess the impact of mission duration on the main science objectives of the mission. We find that the science investigations most affected by mission duration concern the search for seed black holes at cosmic dawn, as well as the study of stellar-origin black holes and of their formation channels via multi-band and multi-messenger observations. We conclude that an extension to 6 years of mission operations is recommended.

8.
Eur Phys J C Part Fields ; 81(2): 162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679233

RESUMO

We study the effects of particle production on the evolution of the inflaton field in an axion monodromy model with the goal of discovering in which situations the resulting dynamics will be consistent with the swampland constraints. In the presence of a modulated potential the evolving background field (solution of the inflaton homogeneous in space) induces the production of long wavelength inflaton fluctuation modes. However, this either has a negligible effect on the inflaton dynamics (if the field spacing between local minima of the modulated potential is large), or else it traps the inflaton in a local minimum and leads to a graceful exit problem. On the other hand, the production of moduli fields at enhanced symmetry points can lead to a realization of trapped inflation consistent with the swampland constraints, as long as the coupling between the inflaton and the moduli fields is sufficiently large.

9.
Eur Phys J C Part Fields ; 80(9): 864, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013193

RESUMO

It has been suggested that low energy effective field theories should satisfy given conditions in order to be successfully embedded into string theory. In the case of a single canonically normalized scalar field this translates into conditions on its potential and the derivatives thereof. In this Letter we revisit small field hilltop models of eternal inflation including stochastic effects and study the compatibility of the swampland constraints with entropy considerations. We show that these stochastic inflation scenarios either violate entropy bounds or the swampland criterion on the slope of the scalar field potential. Furthermore, we illustrate that such models are faced with a graceful exit problem: any patch of space which exits the region of eternal inflation is either not large enough to explain the isotropy of the cosmic microwave background, or has a spectrum of fluctuations with an unacceptably large red tilt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA