Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Liposome Res ; 34(3): 475-488, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38252419

RESUMO

'Active targeting' refers to modifying a nanocarrier's surface with targeting ligands. This study introduced an efficient approach for immobilizing imidazole-based drugs onto the metallated-porphyrin complex within the porphysome nanocarrier. To enhance cellular and bacterial uptake, a Ni-porphyrin with a fatty acid tail was synthesized and placed in the bilayer center of DPPC, facilitating receptor-mediated endocytosis. The Ni-porphyrin in the head group of the Ni-porphyrin-tail was placed superficially in the polar region of the membrane. Spherical unilamellar vesicle formation (DPPC: Ni-porphyrin-tail 4:1 mole ratio), as metallo-porphysome, was achieved through supramolecular self-assembly in an aqueous buffer. These vesicles exhibited a diameter of 279 ± 7 nm and a zeta potential of -15.3 ± 2.5 mV, showcasing their unique cytocompatibility. Nitroimidazole was decorated on the surface of metallo-porphysomes and pistachio green hull extract (PGHE) was loaded into the carrier for synergistic activity against (E. coli) and (S. aureus) bacteria strains. The physicochemical properties of Nitroimidazole-porphysome-PGHE, including size, zeta potential, morphology, loading efficiency, and release profile under various pH and temperature conditions in simulated gastrointestinal fluids were characterized. This combination therapy prevented bacterial cell attachment and biofilm formation in Caco-2 cells, as colon epithelial cells. The remarkable benefit of this system is that it does not affect cell viability even at 0.5 mg/ml. This study demonstrates the potential of a new co-delivery system using biocompatible metallo-porphysomes to decrease bacterial infections.


Assuntos
Antibacterianos , Escherichia coli , Testes de Sensibilidade Microbiana , Pistacia , Extratos Vegetais , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pistacia/química , Porfirinas/química , Porfirinas/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Tamanho da Partícula , Portadores de Fármacos/química , Sinergismo Farmacológico , Células CACO-2
2.
BMC Microbiol ; 22(1): 58, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35176992

RESUMO

BACKGROUND: Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. METHODS: Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported. RESULT: Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 µg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II) > Cu (II) > Cr (III) from the metal-binding experiments.Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) -1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC-MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content. CONCLUSION: The results of this studyindicatede that strains Nostoc sp. N27P72 can be a good candidate for the commercial production of EPS and might be utilized in bioremediation field as an alternative to synthetic and abiotic flocculants.


Assuntos
Processos Autotróficos , Biodegradação Ambiental , Metais Pesados/metabolismo , Nostoc/metabolismo , Cobre/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Nostoc/classificação , Compostos Orgânicos/metabolismo
3.
J Biochem Mol Toxicol ; 36(9): e23145, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35702888

RESUMO

In this study, copper sulfide nanoparticles (CuS-NPs), which can improve the antiproliferative properties of conventional anticancer drugs such as 5-fluorouracil (5-FU), were incorporated into the pores of amine-functionalized UiO-66 (CuS/NH2 -UiO-66). The introduced nano-drug delivery system was exerted to perform an in vitro treatment on CT-26 mouse colorectal cancer cells. The synthesized final product was labeled as 5-FU@CuS/NH2 -UiO-66 and characterized through conventional methods including X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) analysis, Ultraviolet-Visible (UV-Vis) analysis, Inductively coupled plasma mass spectrometry (ICP-MS), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In contrast to 5-FU, the outcomes of the cytotoxicity assay lacked any comparable results for 5-FU@CuS/NH2 -UiO-66.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Aminas , Animais , Neoplasias Colorretais/tratamento farmacológico , Cobre , Fluoruracila/farmacologia , Estruturas Metalorgânicas , Camundongos , Ácidos Ftálicos , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfetos
4.
J Mater Sci Mater Med ; 33(3): 26, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226206

RESUMO

In this work, UiO-66-NH2 was used to prepare a new delivery system by incorporating copper sulfide (CuS) into the pores. The CuS nanoparticles (NPs) were prepared to enhance the anticancer effects of Oxaliplatin (OXA) against colorectal cancer. The oxaliplatin was loaded into CuS@UiO-66-NH2. To characterize and investigate their cytotoxicity effects, powder X-ray diffraction (PXRD), Fourier transformation infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) analysis, UV-Visible analysis, inductively coupled plasma mass spectrometry (ICP-MS), and MTT assay were considered to be performed. According to the observations, the cytotoxicity of OXA-CuS@UiO-66-NH2 was greater than that of the OXA alone.


Assuntos
Neoplasias Colorretais , Sistemas de Liberação de Medicamentos , Neoplasias Colorretais/tratamento farmacológico , Cobre , Humanos , Estruturas Metalorgânicas , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Ácidos Ftálicos , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Bioorg Med Chem ; 30: 115944, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33352388

RESUMO

In an attempt to find new potent cytotoxic compounds, several mono- and bis-pyrazolophthalazines 4a-m and 6a-h were synthesized through an efficient, one-pot, three- and pseudo five-component synthetic approach. All derivatives were evaluated for their in vitro cytotoxic activities against four human cancer cell lines of A549, HepG2, MCF-7, and HT29. Compound 4e showed low toxicity against normal cell lines (MRC-5 and MCF 10A, IC50 > 200 µM) and excellent cytotoxic activity against A549 cell line with IC50 value of 1.25 ± 0.19 µM, which was 1.8 times more potent than doxorubicin (IC50 = 2.31 ± 0.13 µM). In addition, compound 6c exhibited remarkable cytotoxic activity against A549 and MCF-7 cell lines (IC50 = 1.35 ± 0.12 and 0.49 ± 0.01 µM, respectively), more than two-fold higher than that of doxorubicin. The binding properties of the best active mono- and bis-pyrazolophthalazine (4e and 6c) with HSA and DNA were fully evaluated by various techniques including UV-Vis absorption, circular dichroism (CD), Zeta potential and dynamic light scattering analyses indicating interaction of the compounds with the secondary structure of HSA and significant change of DNA conformation, presumably via a groove binding mechanism. Additionally, molecular docking and site-selective binding studies confirmed the fundamental interaction of compounds 4e and 6c with base pairs of DNA. Compounds 4e and 6c showed promising features to be considered as potential lead structures for further studies in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , DNA/química , Desenho de Fármacos , Simulação de Acoplamento Molecular , Ftalazinas/farmacologia , Albumina Sérica Humana/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Ftalazinas/síntese química , Ftalazinas/química , Relação Estrutura-Atividade
6.
Protoplasma ; 261(2): 293-302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37814140

RESUMO

This study aimed to investigate the effects of clinorotation induced by 2-D clinostat on the growth, tropane alkaloid production, gene expression, antioxidant capacity, and cellular defense responses in the callus tissue of Hyoscyamus niger. Callus induction was conducted by putting hypocotyl explants in the MS culture medium supplemented with 1 mgL-1 2,4-D and 1 mgL-1 BAP growth regulators. The sub-cultured calli were placed on a clinostat for 0, 3, 7, and 10 days (2.24 × 10-5 g on the edge of the callus ring). Clinorotation significantly increased callus fresh weight, dry weight, protein, carbohydrate, and proline contents compared to the control, and their maximum contents were obtained after 7 and 10 days. H2O2 level enhanced under clinorotation with a 76.3% rise after 10 days compared to control and positively affected the atropine (77.1%) and scopolamine (69.2%) productions. Hyoscyamine 6-beta hydroxylase and putrescine N-methyltransferase gene expression involved in the tropane alkaloid biosynthesis were upregulated markedly with 14.2 and 17.1-folds increase after 10 days of clinorotation, respectively. The expressions of jasmonic acid, mitogen-activated protein kinase, and ethylene-responsive element-binding transcription factor were upregulated, and the activity of peroxidase and catalase showed a 72.7 and 80% rise after 10 days. These findings suggest that microgravity can enhance callogenesis by stimulating the ROS level, which can impact the antioxidant enzymes, tropane alkaloid formation, and gene expression.


Assuntos
Hyoscyamus , Hyoscyamus/genética , Hyoscyamus/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Rotação , Raízes de Plantas/metabolismo , Tropanos/metabolismo , Tropanos/farmacologia , Expressão Gênica
7.
Ecotoxicol Environ Saf ; 88: 35-41, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23164448

RESUMO

Currently, the biological effects of nonionizing electromagnetic fields (EMFs) including radiofrequency (RF) radiation have been the subject of numerous experimental and theoretical studies. The aim of this study is to evaluate the possible biological effects of mobile phone RF (940 MHz, 15 V/m and SAR=40 mW/kg) on the structure of calf thymus DNA (ct DNA) immediately after exposure and 2 h after 45 min exposure via diverse range of spectroscopic instruments. The UV-vis and circular dichroism (CD) experiments depict that mobile phone EMFs can remarkably cause disturbance on ct DNA structure. In addition, the DNA samples, immediately after exposure and 2 h after 45 min exposure, are relatively thermally unstable compared to the DNA solution, which was placed in a small shielded box (unexposed ct DNA). Furthermore, the exposed DNA samples (the DNA samples that were exposed to 940 MHz EMF) have more fluorescence emission when compared with the unexposed DNA, which may have occurred attributable to expansion of the exposed DNA structure. The results of dynamic light scattering (DLS) and zeta potential experiments demonstrate that RF-EMFs lead to increment in the surface charge and size of DNA. The structure of DNA immediately after exposure is not significantly different from the DNA sample 2 h after 45 min exposure. In other words, the EMF-induced conformational changes are irreversible. Collectively, our results reveal that 940 MHz can alter the structure of DNA. The displacement of electrons in DNA by EMFs may lead to conformational changes of DNA and DNA disaggregation. Results from this study could have an important implication on the health effects of RF-EMFs exposure. In addition, this finding could proffer a novel strategy for the development of next generation of mobile phone.


Assuntos
Telefone Celular , DNA/efeitos da radiação , Conformação de Ácido Nucleico/efeitos da radiação , Ondas de Rádio , Animais , Bovinos , Dicroísmo Circular , Campos Eletromagnéticos , Fluorescência
8.
Int J Biol Macromol ; 253(Pt 7): 127454, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844822

RESUMO

Glucosamine (Glu) is a cartilage and joint fluid matrix precursor that modulates osteoarthritic joint changes. To improve the enzymatic stability, glucosamine was developed into nanoglucosamine by the ionic gelation method through sodium tripolyphosphate (TPP) as cross-linking agent. The optimized mass ratio of Glu:TPP was (3:1) with the particle size 163 ± 25 nm and surface charge -5 mV. Then Sinapic acid (SA) as a natural phenolic acid with strong antioxidant and antimicrobial activities has been grafted onto glucosamine nanoparticles (GluNPs) with grafting efficiency (73 ± 6 %). The covalent insertion of SA was confirmed by UV-Vis, FTIR, 1HNMR, XRD, and FESEM analyses and the other physicochemical properties were also characterized. SA-g-GluNPs showed spherical shape with a mean diameter of 255 ± 20 nm and zeta potential +16 mV. The in vitro release profile of SA-g-GluNPs exhibited the sustained and pH-dependent drug release property. SA-g-GluNPs had a more pronounced effect on reducing the elevated levels of LPS-induced oxidative stress and pro-inflammatory cytokines than free SA in the human chondrocyte C28/I2 cell line. Furthermore, the antibacterial properties against E. coli and S. aureus were also improved by SA-g-GluNPs. This study demonstrated the potential of phenolic acid grafted GluNPs in therapeutic drug applications for chondroprotection and food industries.


Assuntos
Quitosana , Nanopartículas , Osteoartrite , Humanos , Glucosamina , Quitosana/química , Escherichia coli , Staphylococcus aureus , Anti-Inflamatórios/farmacologia , Osteoartrite/tratamento farmacológico , Nanopartículas/química
9.
BMC Res Notes ; 16(1): 224, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735703

RESUMO

BACKGROUND: COVID-19 is a respiratory illness caused by SARS-CoV-2. Pharmaceutical companies aim to control virus spread through effective drugs. This study investigates chromone compound derivatives' ability to inhibit viral entry and prevent replication. METHOD: This study investigated the inhibitory effect of chromone-embedded peptidomimetics and furopyrimidines on 7BZ5 from Severe Acute Respiratory Syndrome CoV-2, Homo sapiens, and 6LU7 from Bat SARS-like CoV using molecular docking. The crystal structure of these proteins was obtained from the Protein Data Bank, and the inhibition site was determined using ligand binding interaction options. The 3D structure was protonated and energetically minimised using MOE software. Chromone derivatives were designed in three dimensions, and their energy was minimised using MOE 2019. The molecular drug-likeness was calculated using SwissADME, Lipinski and Benigni-Bossa's rule, and toxicity was calculated using Toxtree v3.1.0 software. Compounds with pharmacological properties were selected for molecular docking, and interactions were assessed using MOE 2019. MD simulations of Mpro-ch-p complexes were performed to evaluate root mean square fluctuations (RMSF) and measure protein stability. RESULT: The pharmacokinetic tests revealed that chromone derivatives of the peptidomimetic family have acceptable pharmacokinetic activity in the human body. Some compounds, such as Ch-p1, Ch-p2, Ch-p6, Ch-p7, Ch-p12, and Ch-p13, have pronounced medicinal properties. Molecular docking revealed high affinity for binding to SARS-CoV-2 protease. Ch-p7 had the highest binding energy, likely due to its inhibitory property. A 10 ns molecular dynamics study confirmed the stability of the protein-ligand complex, resulting in minimal fluctuations in the system's backbone. The MM-GBSA analysis revealed free energies of binding of - 19.54 kcal/mol. CONCLUSIONS: The study investigated the inhibition of viral replication using chromone derivatives, finding high inhibitory effects in the peptidomimetic family compared to other studies.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , Peptidomiméticos/farmacologia , Simulação de Acoplamento Molecular , Ligantes , SARS-CoV-2 , Cromonas/farmacologia
10.
Iran J Public Health ; 51(5): 1143-1151, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36407748

RESUMO

Background: Visfatin is known as one of the adipokines associated with the development of inflammation, but its role in the pathogenesis of nonalcoholic fatty liver is less known so far. We aimed to investigate the association between visfatin gene polymorphism rs4730153 and insulin resistance and non-alcoholic fatty liver disease (NAFLD). Methods: This case-control study was performed on 80 patients with NAFLD as well as 80 healthy participants as controls referred to Amir Al-Momenin and Bouali hospitals in Tehran. Genotyping was performed using PCR-RFLP method. Plasma concentrations of visfatin and insulin were measured using ELISA kit. The fasting blood glucose, TC, TG, LDL-C, HDL-C, ALT, AST, SBP, DBP, and BMI levels were measured using the standard methods. Statistical analysis was also performed using SPSS software. Results: A significant difference was found in Visfatin level in the patients with NAFLD compared to this level in healthy individuals. The levels of HDL-C and LDL-C in healthy individuals and triglyceride in patients for GG, AG, and AA genotypes carriers also were significantly different. There was a significant relationship between rs4730153 polymorphism and insulin resistance; however, no association was found between this polymorphism and NAFLD. Notably, Visfatin showed a significant association with age (all individuals), body mass index (healthy individuals), insulin, and HOMA (in patients). Conclusion: Visfatin levels reduced in patients with NAFLD. Moreover, rs4730153 polymorphism was indicated to be associated with both lipid metabolism and insulin resistance, but no association was found between this polymorphism and nonalcoholic fatty liver disease.

11.
Rep Biochem Mol Biol ; 10(4): 640-652, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35291609

RESUMO

Background: For many years, the chemotherapeutic agent doxorubicin (DOX) has been used to treat various cancers; however, DOX initiates several critical adverse effects. Many studies have reported that non-thermal atmospheric pressure plasma can provide novel, but challenging, treatment strategies for cancer patients. To date, tissues and cells have been treated with plasma-activated medium (PAM) as a practical therapy. Consequently, due to the harmful adverse effects of DOX, we were motivated to elucidate the impact of PAM in the presence of DOX on MCF-7 cell proliferation. Methods: MTT assay, N-acetyl-L-cysteine (NAC) assay, and flow cytometry analysis were utilized in this research. Results: The results demonstrated that 0.45 µM DOX combined with 3-min PAM significantly induced apoptosis (p< 0.01) through intracellular ROS generation in MCF-7 when compared with 0.45 µM DOX alone or 3-min PAM alone. In contrast, after treatment with 0.45 µM DOX plus 4-min PAM, cell necrosis was increased. Hence, DOX combined with 4-min PAM has cytotoxic effects with different mechanisms than 4-min PAM alone, in which the number of apoptotic cells increases. Conclusion: Although further investigations are crucial, low doses of DOX plus 3-min PAM could be a promising strategy for cancer therapy. The findings from this research may offer advantageous and innovative clinical strategies for cancer therapy using PAM.

12.
Cell J ; 24(8): 458-464, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36093805

RESUMO

Objective: Primordial germ cell (PGCs) lines are a source of a highly specialized type of cells, characteristically oocytes,
during female germline development in vivo. The oocyte growth begins in the transition from the primary follicle. It is
associated with dynamic changes in gene expression, but the gene-regulating signals and transcription factors that control oocyte growth remain unknown. We aim to investigate the differentiation potential of mouse bone marrow mesenchymal stem cells (mMSCs) into female germ-like cells by testing several signals and transcription factors.
Materials and Methods: In this experimental study, mMSCs were extracted from mice femur bone using the flushing
technique. The cluster-differentiation (CD) of superficial mesenchymal markers was determined with flow cytometric analysis. We applied a set of transcription factors including retinoic acid (RA), titanium nanotubes (TNTs), and fibrin such as TNT-coated fibrin (F+TNT) formation and (RA+F+TNT) induction, and investigated the changes in gene, MVH/ DDX4, expression and functional screening using an in vitro mouse oocyte development condition. Germ cell markers expression, (MVH / DDX4), was analyzed with Immunocytochemistry staining, quantitative transcription-polymerase chain reaction (RT-qPCR) analysis, and Western blots.
Results: The expression of CD was confirmed by flow cytometry. The phase determination of the TNTs and F+TNT were confirmed using x-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. Remarkably, applying these transcription factors quickly induced pluripotent stem cells into oocyte-like cells that were sufficient to generate female germlike cells, growth, and maturation from mMSCs differentiation. These transcription factors formed oocyte-like cells specification of stem cells, epigenetic reprogramming, or meiosis and indicate that oocyte meiosis initiation and oocyte growth are not separable from the previous epigenetic reprogramming in stem cells in vitro.
Conclusion: Results suggested several transcription factors may apply for arranging oocyte-like cell growth and supplies an alternative source of in vitro maturation (IVM).

13.
J Food Biochem ; 46(10): e14279, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35727699

RESUMO

Inhibition of tyrosinase activity can control fruit browning and preserve the flavor and nutritional value of food. The impacts of fulvic acid (FA) and humic acid (HA) on tyrosinase activity were investigated utilizing circular dichroism (CD) and fluorescence spectroscopy, molecular docking (MD), and molecular dynamics simulations. HA and FA demonstrated a mixed type of inhibition with Ki 2.02 and 5.2 µM, respectively. The thermodynamic parameters displayed that the hydrogen bond and hydrophobic force play a major role in the FA-tyrosinase and HA-tyrosinase interaction, respectively. Fluorescence experiments demonstrated changes in tyrosinase tertiary structures. HA could not destroy the tyrosinase secondary structure significantly, however, FA has a significant influence on the tyrosinase secondary structure. The molecular dynamics findings demonstrated the minimal fluctuations and the lowest flexibility in the complex amino acids in the HA-tyrosinase and FA-tyrosinase interaction. Altogether, HA and FA could be utilized in food industries as an accessible natural source for tyrosinase inhibition. PRACTICAL APPLICATIONS: Recently, the investigation of tyrosinase inhibitors from the biosphere for hindrance of undesired browning in the food industry has increased considerably. Mushroom tyrosinase is a suitable model for kinetic research owing to its availability as well as close conformational similarity to tyrosinase in a mammal. Natural sources and their effective compounds could have wonderful potential on tyrosinase activity and structure, thus, in this study, the interactions between tyrosinase and fulvic acid (FA) and Humic acid (HA) were investigated. Previously, it has been shown that HA and FA have antioxidant properties and they can improve the quality of food via retarding lipid oxidation. Altogether, further investigations are warranted to draw firm conclusions, HA and FA could be utilized in food industries not only as antioxidant agents but also as an accessible natural source for tyrosinase inhibition.


Assuntos
Substâncias Húmicas , Monofenol Mono-Oxigenase , Aminoácidos , Animais , Antioxidantes , Substâncias Húmicas/análise , Lipídeos , Mamíferos , Simulação de Acoplamento Molecular
14.
Avicenna J Phytomed ; 12(1): 77-88, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145897

RESUMO

OBJECTIVE: This study intended to perform a synthesizing procedure for amorphous calcium phosphate (ACP) through a green template by the usage of brown rice (BR). MATERIALS AND METHODS: ACP nanoparticles were obtained by application of a sol-gel method and comprehensively characterized using X-ray powder diffraction (XRD), zeta potential, fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), and atomic force microscopy (AFM). Cytotoxic activity of ACP was evaluated in human epithelial type 2 (HEp-2) cell lines. The antibacterial effects of nanoparticles were appraised against Gram-positive Streptococcus mutans and Enterococcus faecalis. RESULTS: The procedures for the evaluation of the characterization outcomes, dispersion, and stability of our product were confirmed by observing the smooth and uniformed surfaces of ACP. The zeta potential value of the synthesized sample was -22 mV, which indicates its acceptable stable condition caused by electrostatic repulsion. The cytotoxicity of the ACP nanoparticles was investigated in HEp-2 cells, and results showed no cytotoxicity for the synthesized nanoparticles. Also, the obtained minimum inhibitory concentration (MIC) of ACP nanoparticles in opposition to S. mutans and E. faecalis was 15 and 20 µg/ml, respectively, indicating the resistance of E. faecalis in comparison to S. mutans and MBC for synthesized nanoparticles against S. mutans and E. faecalis strains was 20 and 25 µg/ml. CONCLUSION: The present study showed that this compound has no toxicity on the examined cell line. Also, the antibacterial properties of the synthesized ACP were approved by the obtained data, which enables the application of this material for therapeutic purposes in the pharmaceutical industry.

15.
Pharmaceutics ; 14(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36559135

RESUMO

Breast cancer is one of the most common malignancies and a leading cause of cancer-related mortality among women worldwide. The elements of group XIV in the periodic table exhibit a wide range of chemical manners. Recently, there have been remarkable developments in the field of nanobiomedical research, especially in the application of engineered nanomaterials in biomedical applications. In this review, we concentrate on the recent investigations on the antiproliferative effects of nanomaterials of the elements of group XIV in the periodic table on breast cancer cells. In this review, the data available on nanomaterials of group XIV for breast cancer treatment has been documented, providing a useful insight into tumor biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.

16.
J Lasers Med Sci ; 12: e85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155170

RESUMO

Introduction: Cervical and ovarian cancers are well-known causes of death among women in developing countries. There are various technologies to treat cancer cells, but the polyphenolic compound is a natural one and has an anti-cancer effect. Sinensetin is one of them and is found in Orthosiphon stamineus and citrus fruits. Since combination therapy is more effective than drug treatment alone, in this study, we investigated combination therapy using sinensetin and low-level laser therapy (LLLT) to enhance treatment. Methods: The cancer cells purchased from Pasteur Institute, Iran, were cultured. The cells were treated with various concentrations of sinensetin (0.1-1-10-50,150 µg/mL for 24 hours), wavelengths of laser therapy (660 nm) and power density (3 J/cm2) for different times)30, 60, and 90 seconds) separately. Furthermore, sensitivity of cells to sinensetin, LLLT and combined therapy was determined by clonogenic assays. To measure DNA damage and repair at individual cell level used comet assay. To examine the intracellular generation of reactive oxygen species used 2',7'-dichlorodihydrofluorescein (DCFH) as an intracellular probe. To analyze data we used SPSS software and comparison between groups was used (ANOVA) and t test statistical analyses were performed using SPSS 17 software. Data are presented as means - standard error of mean. The level of statistical significance was set at a two-tailed P value of 0.05. All tests were performed in triplicate. Results: Our results demonstrated that the doubling time for CHO is more than Hella cells, with 20.7 and 27.7 h for each cell respectively. The pretreatments (first LLLT, then sinensetin) can decrease the viability of both cell lines more than the first treatment (sinensetin + LLLT). In the clonogenic assay, the pretreatment of cells with LLLT and Sinensetin significantly reduced the surviving fraction of both cell lines. MTT results showed that pretreatment with LLLT and Sinensetin can increase cell death compared to Sinensetin and LLLT alone. Production of ROS within the cell was enhanced with LLLT + sinensetin. Conclusion: Our result indicated that combined therapy with LLLT and Sinensetin can treat CHO and Hela cells better than the other groups. Combination treatment with sinensetin-LLLT and the other treatment means, sinensetin and LLLT alone, did not change the cell viability significantly.

17.
Protein J ; 39(3): 268-283, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32086692

RESUMO

Since the interactions of anti-cancer agents with blood constituents, in particular with human serum albumin (HSA) may have a major impact on drug pharmacology, the present study designed to provide a fundamental understanding of the interaction of nanodiamonds (NDs) together with paclitaxel (PTX) with HSA in detail for the first time. The UV-Vis, steady-state fluorescence, far-UV CD and zeta potential results displayed that PTX + NDs could form a complex with HSA. Additionally, the values of binding constants and ΔG° showed that PTX + NDs interact strongly with HSA compared to PTX or NDs alone and the hydrophobic force plays a major role in this interaction. Moreover, the in vitro release behavior of PTX + NDs form HSA can be regulated at dissimilar pH levels. The anticancer property of 0.5 µM PTX + 20 µM NDs by MTT assay demonstrates that this combination can tremendously diminish the proliferation of MDA-MB-231cells compared to PTX or NDs alone. Altogether, the structure of HSA changed moderately in the presence of PTX + NDs and PTX + NDs can promote mortality of MDA-MB-231 cells besides those mortality effects induced via PTX or NDs alone. The results obtained from this study can help in understanding the pharmacokinetic properties of PTX + NDs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Nanodiamantes/química , Paclitaxel/farmacologia , Albumina Sérica Humana/química , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Nanodiamantes/toxicidade , Paclitaxel/química , Ligação Proteica , Albumina Sérica Humana/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-30922151

RESUMO

The combination effects of nanodiamonds (NDs) and Paclitaxel (PTX) on the DNA structure were examined. The UV-Visible, steady-state and time-resolved fluorescence spectroscopy, CD, viscosity and zeta potential results showed that PTX + NDs could form a complex via groove binding mechanism. The values of binding constants, ΔG° and ΔH° and ΔS° values showed that PTX + NDs interact strongly with DNA and the hydrophobic force plays main role in this interaction. The ΔG25ο and Tm study indicated the instability of DNA in presence of PTX + NDs. This study demonstrated that NDs could enhance the effect of PTX on DNA structure as well as its affinity and binding to DNA.


Assuntos
DNA/química , Diamante/química , Nanocompostos/química , Nanopartículas/química , Paclitaxel/química , Ligação Competitiva , Cinética , Conformação de Ácido Nucleico , Tamanho da Partícula , Espectrometria de Fluorescência/métodos , Relação Estrutura-Atividade , Propriedades de Superfície , Termodinâmica
19.
Acta Biochim Pol ; 55(3): 549-57, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18769736

RESUMO

A reversible effect of pH on the ionization of amino-acid residues at the active center of choline oxidase was observed near the optimum pH (8). Inactivation of choline oxidase took place in the pH ranges 3-6 and 9-11, in which irreversible changes in the structure occur leading to the enzyme inactivation. The first order rate constants of the enzyme's inactivation at various pH values were estimated for the irreversible changes. The Arrhenius analysis revealed no significant changes in the activation enthalpy, while an increase in the activation entropy reflected an increase in the conformational freedom.


Assuntos
Alcaligenes/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Domínio Catalítico , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Termodinâmica
20.
Biotechnol Rep (Amst) ; 19: e00259, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30023317

RESUMO

Circular dichroism (CD) in far-UV region was employed to study the extent of changes occurred in the secondary structures of recombinant streptokinase (rSK), solubilized from inclusion bodies (IBs) by different chemicals and refolded/purified by chromatographic techniques. The secondary structure distribution of rSK, obtained following different chemical solubilization systems, was varied and values in the range of 12.4-14.5% α-helices, 40-51% ß-sheets and 35.5-48.3% turns plus residual structures were found. With reducing the concentration of chemicals during IB solubilization, the content of turns plus random coils was diminished and simultaneously the amounts of α- and ß-sheets were increased. These changes in the secondary structures would lower the hydrophobicity along with the chance of protein aggregation and expose the hydrophilic regions of the protein. Therefore, these alterations in the secondary structures, occurred following efficient IBs solubilization by low concentration of chemicals, could be related to enhancement in rSK biological potency previously observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA