Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 56(2): 390-8, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26898267

RESUMO

Molecular profiling efforts aim at characterizing the biological actions of small molecules by screening them in hundreds of different biochemical and/or cell-based assays. Together, these assays yield a rich data landscape of target-based and phenotypic effects of the tested compounds. However, submitting an entire compound library to a molecular profiling panel can easily become cost-prohibitive. Here, we make use of historical screening assays to create comprehensive bioactivity profiles for more than 300 000 small molecules. These bioactivity profiles, termed PubChem high-throughput screening fingerprints (PubChem HTSFPs), report small molecule activities in 243 different PubChem bioassays. Although the assays originate from originally independently pursued drug or probe discovery projects, we demonstrate their value as molecular signatures when used in combination. We use these PubChem HTSFPs as molecular descriptors in hit expansion experiments for 33 different targets and phenotypes, showing that, on average, they lead to 27 times as many hits in a set of 1000 chosen molecules as a random screening subset of the same size (average ROC score: 0.82). Moreover, we demonstrate that PubChem HTSFPs retrieve hits that are structurally diverse and distinct from active compounds retrieved by chemical similarity-based hit expansion methods. PubChem HTSFPs are made freely available for the chemical biology research community.


Assuntos
Bioensaio , Ensaios de Triagem em Larga Escala
2.
Chembiochem ; 16(16): 2392-402, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26391210

RESUMO

A universal method that improves protein stability and evolution has thus far eluded discovery. Recently, however, studies have shown that insertional fusion to a protein chaperone stabilized various target proteins with minimal negative effects. The improved stability was derived from insertion into a hyperthermophilic protein, Pyrococcus furiosus maltodextrin-binding protein (PfMBP), rather than from changes to the target protein sequence. In this report, by evaluating the thermodynamic and kinetic stability of various inserted ß-lactamase (BLA) homologues, we were able to examine the molecular determinants of stability realized by insertional fusion to PfMBP. Results indicated that enhanced stability and suppressed aggregation of BLA stemmed from enthalpic and entropic mechanisms. This report also suggests that insertional fusion to a stable protein scaffold has the potential to be a useful method for improving protein stability, as well as functional protein evolution.


Assuntos
Proteínas Arqueais/química , Pyrococcus furiosus/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Varredura Diferencial de Calorimetria , Cromatografia em Gel , Dicroísmo Circular , Entropia , Cinética , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , beta-Lactamases/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA