Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 579(7800): 518-522, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214245

RESUMO

Carbonaceous (C-type) asteroids1 are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites2,3 and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth's atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)4 onboard the spacecraft Hayabusa25, indicating that the asteroid's boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m-2 s-0.5 K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites6 and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect7,8. We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites6. These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity9 of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies10.

2.
Planta ; 259(1): 25, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108922

RESUMO

MAIN CONCLUSION: Xanthoria parietina survivability in Mars-like conditions was supported by water-lysis efficiency recovery and antioxidant content balancing with ROS production after 30 days of exposure. Xanthoria parietina (L.) Th. Fr. is a widespread lichen showing tolerance against air pollutants and UV-radiation. It has been tested under space-like and Mars-like conditions resulting in high recovery performances. Hereby, we aim to assess the mechanisms at the basis of the thalli resilience against multiple space stress factors. Living thalli of X. parietina were exposed to simulated Martian atmospheric conditions (Dark Mars) and UV radiation (Full Mars). Then, we monitored as vitality indicator the photosynthetic efficiency, assessed by in vivo chlorophyll emission fluorescence measurements (FM; FV/F0). The physiological defense was evaluated by analyzing the thalli antioxidant capacity. The drop of FM and FV/F0 immediately after the exposure indicated a reduction of photosynthesis. After 24 h from exposure, photosynthetic efficiency began to recover suggesting the occurrence of protective mechanisms. Antioxidant concentrations were higher during the exposure, only decreasing after 30 days. The recovery of photosynthetic efficiency in both treatments suggested a strong resilience by the photosynthetic apparatus against combined space stress factors, likely due to the boosted antioxidants at the beginning and their depletion at the end of the exposure. The overall results indicated that the production of antioxidants, along with the occurrence of photoprotection mechanisms, guarantee X. parietina survivability in Mars-like environment.


Assuntos
Marte , Resiliência Psicológica , Antioxidantes , Meio Ambiente Extraterreno , Estresse Oxidativo , Fotossíntese
3.
Nat Commun ; 14(1): 8225, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086829

RESUMO

Studies of the Venusian mesosphere provide important information about the current state of the entire Venusian atmosphere. This includes information about the dense cloud structure, its vertical thermal profile, temperature fields, and the resulting dynamical and meteorological processes that contribute to a deeper understanding of the climatologically different evolutionary paths of Earth and Venus. However, the last measurements were acquired in 1983 during Venera-15 mission. In this paper, results of mid-infrared spectral measurements of the Venusian atmosphere are presented. Here we show Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) measurements of the Venusian atmosphere during the second flyby of BepiColombo mission on its way to Mercury. Our Venus measurements provide reliable retrievals of mesospheric temperature profiles and cloud parameters between 60 and 75 km altitude, although MERTIS was only designed to operate in Mercury environment. Our results are in good agreement with the Venera-15 mission findings. This indicates the stability of the Venusian atmosphere on time scales of decades.

4.
Sci Rep ; 13(1): 4893, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966209

RESUMO

Xanthoria parietina (L.) Th. Fr. is a widely spread foliose lichen showing high tolerance against UV-radiation thanks to parietin, a secondary lichen substance. We exposed samples of X. parietina under simulated Martian conditions for 30 days to explore its survivability. The lichen's vitality was monitored via chlorophyll a fluorescence that gives an indication for active light reaction of photosynthesis, performing in situ and after-treatment analyses. Raman spectroscopy and TEM were used to evaluate carotenoid preservation and possible variations in the photobiont's ultrastructure respectively. Significant differences in the photo-efficiency between UV irradiated samples and dark-kept samples were observed. Fluorescence values correlated with temperature and humidity day-night cycles. The photo-efficiency recovery showed that UV irradiation caused significant effects on the photosynthetic light reaction. Raman spectroscopy showed that the carotenoid signal from UV exposed samples decreased significantly after the exposure. TEM observations confirmed that UV exposed samples were the most affected by the treatment, showing chloroplastidial disorganization in photobionts' cells. Overall, X. parietina was able to survive the simulated Mars conditions, and for this reason it may be considered as a candidate for space long-term space exposure and evaluations of the parietin photodegradability.


Assuntos
Líquens , Marte , Clorofila A , Meio Ambiente Extraterreno , Carotenoides
5.
Science ; 321(5885): 62-5, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18599769

RESUMO

During MESSENGER's first flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer made simultaneous mid-ultraviolet to near-infrared (wavelengths of 200 to 1300 nanometers) reflectance observations of the surface. An ultraviolet absorption (<280 nanometers) suggests that the ferrous oxide (Fe2+) content of silicates in average surface material is low (less than 2 to 3 weight percent). This result is supported by the lack of a detectable 1-micrometer Fe2+ absorption band in high-spatial-resolution spectra of mature surface materials as well as immature crater ejecta, which suggests that the ferrous iron content may be low both on the surface and at depth. Differences in absorption features and slope among the spectra are evidence for variations in composition and regolith maturation of Mercury's surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA