Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 116(1): 58, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34648073

RESUMO

Cardiomyocyte Na+ and Ca2+ mishandling, upregulated Ca2+/calmodulin-dependent kinase II (CaMKII), and increased reactive oxygen species (ROS) are characteristics of various heart diseases, including heart failure (HF), long QT (LQT) syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). These changes may form a vicious cycle of positive feedback to promote cardiac dysfunction and arrhythmias. In HF rabbit cardiomyocytes investigated in this study, the inhibition of CaMKII, late Na+ current (INaL), and leaky ryanodine receptors (RyRs) all attenuated the prolongation and increased short-term variability (STV) of action potential duration (APD), but in age-matched controls these inhibitors had no or minimal effects. In control cardiomyocytes, we enhanced RyR leak (by low [caffeine] plus isoproterenol mimicking CPVT) which markedly increased STV and delayed afterdepolarizations (DADs). These proarrhythmic changes were significantly attenuated by both CaMKII inhibition and mitochondrial ROS scavenging, with a slight synergy with INaL inhibition. Inducing LQT by elevating INaL (by Anemone toxin II, ATX-II) caused markedly prolonged APD, increased STV, and early afterdepolarizations (EADs). Those proarrhythmic ATX-II effects were largely attenuated by mitochondrial ROS scavenging, and partially reduced by inhibition of CaMKII and pathological leaky RyRs using dantrolene. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) bearing LQT3 mutation SCN5A N406K, dantrolene significantly attenuated cell arrhythmias and APD prolongation. Targeting critical components of the Na+-Ca2+-CaMKII-ROS-INaL arrhythmogenic vicious cycle may exhibit important on-target and also trans-target effects (e.g., INaL and RyR inhibition can alter INaL-mediated LQT3 effects). Incorporating this vicious cycle into therapeutic strategies provides novel integrated insight for treating cardiac arrhythmias and diseases.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Gravidez , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina
2.
JACC Clin Electrophysiol ; 9(12): 2642-2648, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37768254

RESUMO

Despite evidence that women are at higher risk of drug-induced torsade de pointes and sudden cardiac death, female sex is vastly underrepresented in cardiovascular research, thus limiting our fundamental understanding of sex-specific arrhythmia mechanisms and our ability to predict arrhythmia propensity. To address this urgent clinical and preclinical need, we developed a quantitative tool that predicts the electrophysiological response to drug administration in female cardiomyocytes starting from data collected in males. We demonstrate the suitability of our translator for sex-specific cardiac safety assessment and include proof-of-concept application of our translator to in vitro and in vivo data.


Assuntos
Síndrome do QT Longo , Humanos , Masculino , Feminino , Síndrome do QT Longo/induzido quimicamente , Preparações Farmacêuticas , Eletrocardiografia , Coração , Arritmias Cardíacas/induzido quimicamente
3.
Free Radic Biol Med ; 162: 490-499, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33186741

RESUMO

Insufficient oxygen supply (hypoxia) during fetal and embryonic development can lead to latent phenotypical changes in the adult cardiovascular system, including altered cardiac function and increased susceptibility to ischemia reperfusion injury. While the cellular mechanisms underlying this phenomenon are largely unknown, several studies have pointed towards metabolic disturbances in the heart of offspring from hypoxic pregnancies. To this end, we investigated mitochondrial function in the offspring of a mouse model of prenatal hypoxia. Pregnant C57 mice were subjected to either normoxia (21%) or hypoxia (14%) during gestational days 6-18. Offspring were reared in normoxia for up to 8 months and mitochondrial biology was assessed with electron microscopy (ultrastructure), spectrophotometry (enzymatic activity of electron transport chain complexes), microrespirometry (oxidative phosphorylation and H202 production) and Western Blot (protein expression). Our data showed that male adult offspring from hypoxic pregnancies possessed mitochondria with increased H202 production and lower respiratory capacity that was associated with reduced protein expression of complex I, II and IV. In contrast, females from hypoxic pregnancies had a higher respiratory capacity and lower H202 production that was associated with increased enzymatic activity of complex IV. From these results, we speculate that early exposure to hypoxia has long term, sex-dependent effects on cardiac metabolic function, which may have implications for cardiovascular health and disease in adulthood.


Assuntos
Hipóxia Fetal , Hipóxia , Animais , Modelos Animais de Doenças , Feminino , Coração , Masculino , Camundongos , Mitocôndrias Cardíacas , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA