Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
World J Biol Psychiatry ; 20(5): 416-423, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29353534

RESUMO

Objectives: Recent research suggested an influence of diminished central nervous serotonin (5-HT) synthesis on the leptin axis via immunological mechanisms in healthy adult females. However, studies assessing immunological parameters in combination with dietary challenge techniques that impact brain 5-HT synthesis in humans are lacking. Methods: In the present trial, a pilot analysis was conducted on data obtained in healthy adult humans receiving either different dietary acute tryptophan depletion (ATD) challenge or tryptophan (TRP)-balanced control conditions (BAL) to study the effects of reduced central nervous 5-HT synthesis on serum tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß) and IL-6 concentrations. The data of N = 35 healthy adults were analysed who were randomly subjected to one of the following two dietary conditions in a double-blind between-subject approach: (1) The Moja-De ATD challenge (ATD), or (2) TRP-balanced control condition for ATD Moja-De (BAL). Serum concentrations for the assessment of relevant parameters (TNF-α, IL-1ß and IL-6) and relevant TRP-related characteristics after the respective challenge procedures were assessed at baseline (T0) and in hourly intervals after administration over a period of 6 h (T1-T6). Results: The ATD condition did not result in significant changes to cytokine concentrations for the entire study sample, or in male and female subgroups. Depletion of CNS 5-HT via dietary TRP depletion appears to have no statistically significant short-term impact on cytokine concentrations in healthy adults. Conclusions: Future research on immunological stressors in combination with challenge techniques will be of value in order to further disentangle the complex interplay between brain 5-HT synthesis and immunological pathways.


Assuntos
Citocinas/sangue , Sistema Imunitário/efeitos dos fármacos , Triptofano/administração & dosagem , Triptofano/sangue , Adolescente , Adulto , Índice de Massa Corporal , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Serotonina/metabolismo , Fatores Sexuais , Adulto Jovem
2.
Nutrients ; 10(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751614

RESUMO

Central nervous serotonin (5-HT) can influence behaviour and neuropsychiatric disorders. Evidence from animal models suggest that lowered levels of neuropeptide Y (NPY) may have similar effects, although it is currently unknown whether decreased central nervous 5-HT impact NPY concentrations. Given that the production of NPY is dependent on the essential amino acid methionine (MET), it is imperative to account for the presence of MET in such investigations. Hence, this study sought to examine the effects of acute tryptophan depletion (ATD; a dietary procedure that temporarily lowers central nervous 5-HT synthesis) on serum concentrations of NPY, whilst using the potential renal acid load indicator (PRAL) to control for levels of MET. In a double-blind repeated measures design, 24 adult humans randomly received an AA-load lacking in TRP (ATD) on one occasion, and a balanced control mixture with TRP (BAL) on a second occasion, both with a PRAL of nearly 47.3 mEq of MET. Blood samples were obtained at 90, 180, and 240 min after each of the AA challenges. ATD, and therefore, diminished substrate availability for brain 5-HT synthesis did not lead to significant changes in serum NPY concentrations over time, compared to BAL, under an acute acidotic stimulus.


Assuntos
Neuropeptídeo Y/sangue , Triptofano/administração & dosagem , Triptofano/sangue , Adulto , Índice de Massa Corporal , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dieta , Método Duplo-Cego , Feminino , Humanos , Masculino , Metionina , Projetos Piloto , Serotonina/metabolismo , Adulto Jovem
3.
Food Nutr Res ; 60: 29272, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27989269

RESUMO

BACKGROUND: Acute tryptophan depletion (ATD) is a well-established dietary method in translational brain research used to briefly lower central nervous serotonin (5-hydroxytryptamine (5-HT)) synthesis. A simplified two amino acid ATD formula (ATDPHE/LEU) was developed while reducing the overall amount of amino acids (AAs), with the objective of administration especially in children and adolescents in future studies. OBJECTIVE: This study investigated tryptophan (TRP) influx rates across the blood-brain barrier (BBB) after dietary ATDPHE/LEU administration relative to the ATD Moja-De protocol that has been established for use in children and adolescents. DESIGN: Seventy-two healthy adults (50% females) were randomized into four groups and administered ATD Moja-De, its TRP-balanced control condition (BAL), ATDPHE/LEU, or its respective control mixture (BALPHE/LEU) in a counterbalanced, double-blind, between-subjects design. Blood samples were collected at baseline and at hourly intervals for 6 h after AA intake. Questionnaires about mood, taste, and challenge tolerance were completed at fixed time points. RESULTS: Both challenge mixtures significantly reduced central nervous TRP influx as calculated by Michaelis-Menten kinetics relative to baseline and the respective control conditions with only mild and comparable side effects. A greater decline in TRP influx over the BBB after ATDPHE/LEU administration when compared with ATD Moja-De was detected without group effects for taste, challenge tolerance, and mood. There was unintended initial short increase in plasma TRP concentrations observed after ATDPHE/LEU intake, and a possible redistribution between free and protein-bound TRP triggered by protein synthesis stimulated by the ingested AAs may account for this finding. Moreover, a decline in TRP influx after BALPHE/LEU administration over a 6-h period was observed, and the large amount of PHE in the BALPHE/LEU mixture may be a possible explanation for this particular phenomenon, which could have led to an unexpected increase in displacement of TRP at the BBB in this control condition. CONCLUSIONS: This pilot study provides preliminary evidence for the possibility of lowering TRP influx as calculated by Michaelis-Menten kinetics into the brain by using a simplified ATD protocol in humans. The simplified composition of only two AAs, the lower overall AA amount, and the appropriate tolerance are characteristics of the newly developed ATDPHE/LEU protocol. Future studies focusing on the effects of the ATDPHE/LEU protocol and its respective control condition on CSF 5-HIAA concentrations, as well as neurochemical studies in rodents, are needed to further validate this newly developed AA mixture before definite conclusions about its usability in ATD-related research in humans, its specificity, and additional effects can be made.

4.
Food Nutr Res ; 59: 28443, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26268708

RESUMO

BACKGROUND: Alterations in serotonergic (5-HT) neurotransmission are thought to play a decisive role in affective disorders and impulse control. OBJECTIVE: This study aims to reproduce and extend previous findings on the effects of acute tryptophan depletion (ATD) and subsequently diminished central 5-HT synthesis in a reinforced categorization task using a refined body weight-adjusted depletion protocol. DESIGN: Twenty-four young healthy adults (12 females, mean age [SD]=25.3 [2.1] years) were subjected to a double-blind within-subject crossover design. Each subject was administered both an ATD challenge and a balanced amino acid load (BAL) in two separate sessions in randomized order. Punishment-related behavioral inhibition was assessed using a forced choice go/no-go task that incorporated a variable payoff schedule. RESULTS: Administration of ATD resulted in significant reductions in TRP measured in peripheral blood samples, indicating reductions of TRP influx across the blood-brain barrier and related brain 5-HT synthesis. Overall accuracy and response time performance were improved after ATD administration. The ability to adjust behavioral responses to aversive outcome magnitudes and behavioral adjustments following error contingent punishment remained intact after decreased brain 5-HT synthesis. A previously observed dissociation effect of ATD on punishment-induced inhibition was not observed. CONCLUSIONS: Our results suggest that neurodietary challenges with ATD Moja-De have no detrimental effects on task performance and punishment-related inhibition in healthy adults.

5.
Food Nutr Res ; 59: 26407, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933613

RESUMO

BACKGROUND: The synthesis of the neurotransmitters serotonin (5-HT) and dopamine (DA) in the brain can be directly altered by dietary manipulation of their relevant precursor amino acids (AA). There is evidence that altered serotonergic and dopaminergic neurotransmission are both associated with impaired attentional control. Specifically, phasic alertness is one specific aspect of attention that has been linked to changes in 5-HT and DA availability in different neurocircuitries related to attentional processes. The present study investigated the impact of short-term reductions in central nervous system 5-HT and DA synthesis, which was achieved by dietary depletion of the relevant precursor AA, on phasic alertness in healthy adult volunteers; body weight-adapted dietary tryptophan and phenylalanine-tyrosine depletion (PTD) techniques were used. METHODS: The study employed a double-blind between-subject design. Fifty healthy male and female subjects were allocated to three groups in a randomized and counterbalanced manner and received three different dietary challenge conditions: acute tryptophan depletion (ATD, for the depletion of 5-HT; N=16), PTD (for the depletion of DA; N=17), and a balanced AA load (BAL; N=17), which served as a control condition. Three hours after challenge intake (ATD/PTD/BAL), phasic alertness was assessed using a standardized test battery for attentional performance (TAP). Blood samples for AA level analyses were obtained at baseline and 360 min after the challenge intake. RESULTS: Overall, there were no significant differences in phasic alertness for the different challenge conditions. Regarding PTD administration, a positive correlation between the reaction times and the DA-related depletion magnitude was detected via the lower plasma tyrosine levels and the slow reaction times of the first run of the task. In contrast, higher tryptophan concentrations were associated with slower reaction times in the fourth run of the task in the same challenge group. CONCLUSION: The present study is the first to demonstrate preliminary data that support an association between decreased central nervous system DA synthesis, which was achieved by dietary depletion strategies, and slower reaction times in specific runs of a task designed to assess phasic alertness in healthy adult volunteers; these findings are consistent with previous evidence that links phasic alertness with dopaminergic neurotransmission. A lack of significant differences between the three groups could be due to compensatory mechanisms and the limited sample size, as well as the dietary challenge procedures administered to healthy participants and the strict exclusion criteria used. The potential underlying neurochemical processes related to phasic alertness should be the subject of further investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA