Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Biol ; 399(1): 2-14, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25512301

RESUMO

The correct wiring of neuronal circuits is of crucial importance for the function of the vertebrate nervous system. Guidance cues like the neuropilin receptors (Npn) and their ligands, the semaphorins (Sema) provide a tight spatiotemporal control of sensory and motor axon growth and guidance. Among this family of guidance partners the Sema3A-Npn1 interaction has been shown to be of great importance, since defective signaling leads to wiring deficits and defasciculation. For the embryonic stage these defects have been well described, however, also after birth the organism can adapt to new challenges by compensational mechanisms. Therefore, we used the mouse lines Olig2-Cre;Npn1(cond) and Npn1(Sema-) to investigate how postnatal organisms cope with the loss of Npn1 selectively from motor neurons or a systemic dysfunctional Sema3A-Npn1 signaling in the entire organism, respectively. While in Olig2-Cre(+);Npn1(cond-/-) mice clear anatomical deficits in paw posturing, bone structure, as well as muscle and nerve composition became evident, Npn1(Sema-) mutants appeared anatomically normal. Furthermore, Olig2-Cre(+);Npn1(cond) mutants revealed a dysfunctional extensor muscle innervation after single-train stimulation of the N.radial. Interestingly, these mice did not show obvious deficits in voluntary locomotion, however, skilled motor function was affected. In contrast, Npn1(Sema-) mutants were less affected in all behavioral tests and able to improve their performance over time. Our data suggest that loss of Sema3A-Npn1 signaling is not the only cause for the observed deficits in Olig2-Cre(+);Npn1(cond-/-) mice and that additional, yet unknown binding partners for Npn1 may be involved that allow Npn1(Sema-) mutants to compensate for their developmental deficits.


Assuntos
Neurônios Motores/metabolismo , Neuropilina-1/metabolismo , Semaforina-3A/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Axônios/fisiologia , Axônios/ultraestrutura , Peso Corporal/genética , Peso Corporal/fisiologia , Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Osso e Ossos/embriologia , Osso e Ossos/inervação , Osso e Ossos/metabolismo , Membro Anterior/embriologia , Membro Anterior/crescimento & desenvolvimento , Membro Anterior/inervação , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Atividade Motora/genética , Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Músculo Esquelético/embriologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Fibras Nervosas/ultraestrutura , Neuropilina-1/genética , Semaforina-3A/genética , Transdução de Sinais/genética , Fatores de Tempo
2.
Dev Biol ; 386(2): 358-70, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24374159

RESUMO

Motor neurons in the vertebrate spinal cord are stereotypically organized along the rostro-caudal axis in discrete columns that specifically innervate peripheral muscle domains. Originating from the same progenitor domain, the generation of spinal motor neurons is orchestrated by a spatially and temporally tightly regulated set of secreted molecules and transcription factors such as retinoic acid and the Lim homeodomain transcription factors Isl1 and Lhx1. However, the molecular interactions between these factors remained unclear. In this study we examined the role of the microRNA 9 (miR-9) in the specification of spinal motor neurons and identified Onecut1 (OC1) as one of its targets. miR-9 and OC1 are expressed in mutually exclusive patterns in the developing chick spinal cord, with high OC1 levels in early-born motor neurons and high miR-9 levels in late-born motor neurons. miR-9 efficiently represses OC1 expression in vitro and in vivo. Overexpression of miR-9 leads to an increase in late-born neurons, while miR-9 loss-of-function induces additional OC1(+) motor neurons that display a transcriptional profile typical of early-born neurons. These results demonstrate that regulation of OC1 by miR-9 is a crucial step in the specification of spinal motor neurons and support a model in which miR-9 expression in late-born LMCl neurons downregulates Isl1 expression through inhibition of OC1. In conclusion, our study contributes essential factors to the molecular network specifying spinal motor neurons and emphasizes the importance of microRNAs as key players in the generation of neuronal diversity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , MicroRNAs/metabolismo , Neurônios Motores/fisiologia , Fatores de Transcrição Onecut/metabolismo , Medula Espinal/embriologia , Análise de Variância , Animais , Sequência de Bases , Embrião de Galinha , Eletroporação , Fluorescência , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Hibridização In Situ , Luciferases , MicroRNAs/genética , Dados de Sequência Molecular , Neurônios Motores/metabolismo , Fatores de Transcrição Onecut/genética
3.
Sci Rep ; 8(1): 8097, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802307

RESUMO

TAR DNA-binding protein 43 (TDP-43) is a key player in neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Accumulation of TDP-43 is associated with neuronal death in the brain. How increased and disease-causing mutant forms of TDP-43 induce cell death remains unclear. Here we addressed the role of TDP-43 during neural development and show that reduced TDP-43 causes defects in neural stem/progenitor cell proliferation but not cell death. However, overexpression of wild type and TDP-43A315T proteins induce p53-dependent apoptosis of neural stem/progenitors and human induced pluripotent cell (iPS)-derived immature cortical neurons. We show that TDP-43 induces expression of the proapoptotic BH3-only genes Bbc3 and Bax, and that p53 inhibition rescues TDP-43 induced cell death of embryonic mouse, and human cortical neurons, including those derived from TDP-43G298S ALS patient iPS cells. Hence, an increase in wild type and mutant TDP-43 induces p53-dependent cell death in neural progenitors developing neurons and this can be rescued. These findings may have important implications for accumulated or mutant TDP-43 induced neurodegenerative diseases.


Assuntos
Apoptose , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Mutação , Neurogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
PLoS One ; 10(4): e0123643, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874621

RESUMO

The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination deficits.


Assuntos
Axônios/patologia , Proteínas de Membrana/fisiologia , Neurônios Motores/patologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Comportamento Animal , Toxina da Cólera/química , Eletromiografia , Marcha , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora , Mutação , Proteínas do Tecido Nervoso/genética , Medula Espinal/patologia , Sinapses/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA