Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 156(20): 204104, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649854

RESUMO

In this work, we present a one-step second-order converger for state-specific (SS) and state-averaged (SA) complete active space self-consistent field (CASSCF) wave functions. Robust convergence is achieved through step restrictions using a trust-region augmented Hessian (TRAH) algorithm. To avoid numerical instabilities, an exponential parameterization of variational configuration parameters is employed, which works with a nonredundant orthogonal complement basis. This is a common approach for SS-CASSCF and is extended to SA-CASSCF wave functions in this work. Our implementation is integral direct and based on intermediates that are formulated in either the sparse atomic-orbital or small active molecular-orbital basis. Thus, it benefits from a combination with efficient integral decomposition techniques, such as the resolution-of-the-identity or the chain-of-spheres for exchange approximations. This facilitates calculations on large molecules, such as a Ni(II) complex with 231 atoms and 5154 basis functions. The runtime performance of TRAH-CASSCF is competitive with the other state-of-the-art implementations of approximate and full second-order algorithms. In comparison with a sophisticated first-order converger, TRAH-CASSCF calculations usually take more iterations to reach convergence and, thus, have longer runtimes. However, TRAH-CASSCF calculations still converge reliably to a true minimum even if the first-order algorithm fails.

2.
J Chem Phys ; 154(16): 164104, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33940809

RESUMO

We present a new implementation of a trust-region augmented Hessian approach (TRAH-SCF) for restricted and unrestricted Hartree-Fock and Kohn-Sham methods. With TRAH-SCF, convergence can always be achieved even with tight convergence thresholds, which requires just a modest number of iterations. Our convergence benchmark study and our illustrative applications focus on open-shell molecules, also antiferromagnetically coupled systems, for which it is notoriously complicated to converge the Roothaan-Hall self-consistent field (SCF) equations. We compare the number of TRAH iterations to reach convergence with those of Pulay's original and Kollmar's (K) variants of the direct inversion of the iterative subspace (DIIS) method and also analyze the obtained SCF solutions. Often, TRAH-SCF finds a symmetry-broken solution with a lower energy than DIIS and KDIIS. For unrestricted calculations, this is accompanied by a larger spin contamination, i.e., larger deviation from the desired spin-restricted ⟨S2⟩ expectation value. However, there are also rare cases in which DIIS finds a solution with a lower energy than KDIIS and TRAH. In rare cases, both TRAH-SCF and KDIIS may also converge to a non-aufbau solution. For those calculations, standard DIIS always diverges. For cases that converge smoothly with either method, TRAH usually needs more iterations to converge than DIIS and KDIIS because for every new set of orbitals, the level-shifted Newton-Raphson equations are solved approximately and iteratively. In such cases, the total runtime of TRAH-SCF is still competitive with the DIIS-based approaches even if extended basis sets are employed, which is illustrated for a large hemocyanin model complex.

3.
J Chem Phys ; 155(10): 104109, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525816

RESUMO

In the present work, we describe a more accurate and efficient variant of the chain-of-spheres algorithm (COSX) for exchange matrix computations. Higher accuracy for the numerical integration is obtained with new grids that were developed using global optimization techniques. With our new default grids, the average absolute energy errors are much lower than 0.1 kcal/mol, which is desirable to achieve "chemical accuracy." Although the size of the new grids is increased by roughly a factor of 2.5, the excellent efficiency of the original COSX implementation is still further improved in most cases. The evaluation of the analytic electrostatic potential integrals was significantly accelerated by a new implementation of rolled-out versions of the Dupuis-Rys-King and Head-Gordon-Pople algorithms. Compared to our earlier implementation, a twofold speedup is obtained for the frequently used triple-ζ basis sets, while up to a 16-fold speedup is observed for quadruple-ζ basis sets. These large gains are a consequence of both the more efficient integral evaluation and the intermediate exchange matrix computation in a partially contracted basis when generally contracted shells occur. With our new RIJCOSX implementation, we facilitate accurate self-consistent field (SCF) binding energy calculations on a large supra-molecular complex composed of 320 atoms. The binding-energy errors with respect to the fully analytic results are well below 0.1 kcal/mol for the cc-pV(T/Q)Z basis sets and even smaller than for RIJ with fully analytic exchange. At the same time, our RIJCOSX SCF calculation even with the cc-pVQZ basis and the finest grid is 21 times faster than the fully analytic calculation.

4.
J Chem Phys ; 152(20): 204104, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486677

RESUMO

DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.

5.
J Chem Phys ; 152(18): 184107, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414256

RESUMO

TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.

6.
J Comput Chem ; 40(14): 1463-1470, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30801743

RESUMO

A perturbation theory-based algorithm for the iterative orbital update in complete active space self-consistent-field (CASSCF) calculations is presented. Following Angeli et al. (J. Chem. Phys. 2002, 117, 10525), the first-order contribution of singly excited configurations to the CASSCF wave function is evaluated using the Dyall Hamiltonian for the determination of a zeroth-order Hamiltonian. These authors employ an iterative diagonalization of the first-order density matrix including the first-order correction arising from single excitations, whereas the present approach uses the single-excitation amplitudes directly for the construction of the exponential of an anti-Hermitian matrix resulting in a unitary matrix which can be used for the orbital update. At convergence, the single-excitation amplitudes vanish as a consequence of the generalized Brillouin's theorem. It is shown that this approach in combination with direct inversion of the iterative subspace (DIIS) leads to very rapid convergence of the CASSCF iteration procedure. © 2019 Wiley Periodicals, Inc.

7.
J Chem Phys ; 150(17): 174121, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067879

RESUMO

The complete active space self-consistent-field (CASSCF) linear response method for the simulation of ultraviolet-visible (UV/Vis) absorption and electronic circular dichroism (ECD) spectra of large open-shell molecules is presented. By using a one-index transformed Hamiltonian, the computation of the most time-consuming intermediates can be pursued in an integral-direct fashion, which allows us to employ the efficient resolution-of-the-identity and overlap-fitted chain-of-spheres approximation. For the iterative diagonalization, pairs of Hermitian and anti-Hermitian trial vectors are used which facilitate, on the one hand, an efficient solution of the pair-structured generalized eigenvalue problem in the reduced space, and on the other hand, make the full multiconfigurational random phase approximation as efficient as the corresponding Tamm-Dancoff approximation. Electronic transitions are analyzed and characterized in the particle-hole picture by natural transition orbitals that are introduced for CASSCF linear response theory. For a small organic radical, we can show that the accuracy of simulated UV/Vis absorption spectra with the CASSCF linear response approach is significantly improved compared to the popular state-averaged CASSCF method. To demonstrate the efficiency of the implementation, the 50 lowest roots of a large Ni triazole complex with 231 atoms are computed for the simulated UV/Vis and ECD spectra.

8.
Phys Chem Chem Phys ; 20(32): 21051-21061, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30074037

RESUMO

We report the first calculations of rotational strengths for circularly polarised phosphorescence at the coupled cluster level. The rotational strengths for circular dichroism (CD), circularly polarised fluorescence (CPF) and circularly polarised phosphorescence (CPP) were calculated for ß,γ-enones and ketones with conjugated double bonds using the CC2 model. To compute spin-forbidden CPP, spin-orbit coupling with perturbation theory is employed within a response theory framework (SOC-PT-CC2). For closed-shell molecules containing only light elements, a spin-free formalism is used to treat the singlet-triplet transitions. It is verified that the simplification obtained in the spin-free formulation from the Wigner-Eckart theorem for spin-forbidden oscillator strengths is also valid for the rotational strengths. Our implementation utilises the resolution of identity (RI) approximation for two-electron integrals which facilitates applications to larger molecules. In the current study, the rotational strength for spin-forbidden circularly-polarised phosphorescence was calculated for a chiral aromatic system, S-DMBDA, containing 44 atoms.

9.
J Chem Phys ; 146(22): 224101, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29166042

RESUMO

In the present article, we show how to formulate the partially contracted n-electron valence second-order perturbation theory (NEVPT2) energies in the atomic and active molecular orbital basis by employing the Laplace transformation of orbital-energy denominators (OEDs). As atomic-orbital (AO) basis functions are inherently localized and the number of active orbitals is comparatively small, our formulation is particularly suited for a linearly scaling NEVPT2 implementation. In our formulation, there are two kinds of NEVPT2 energy contributions, which differ in the number of active orbitals in the two-electron integrals involved. Those involving integrals with either no or a single active orbital can be formulated completely in the AO basis as single-reference second-order Møller-Plesset perturbation theory and benefit from sparse active pseudo-density matrices-particularly if the active molecular orbitals are localized only in parts of a molecule. Conversely, energy contributions involving integrals with either two or three active orbitals can be obtained from Coulomb and exchange matrices generalized for pairs of active orbitals. Moreover, we demonstrate that Laplace-transformed partially contracted NEVPT2 is nothing less than time-dependent NEVPT2 [A. Y. Sokolov and G. K.-L. Chan, J. Chem. Phys. 144, 064102 (2016)] iff the all-active intermediates are computed with the internal-contraction approximation. Furthermore, we show that for multi-reference perturbation theories it is particularly challenging to find optimal parameters of the numerical Laplace transformation as the fit range may vary among the 8 different OEDs by many orders of magnitude. Selecting the number of quadrature points for each OED separately according to an accuracy-based criterion allows us to control the errors in the NEVPT2 energies reliably.

10.
J Chem Phys ; 145(1): 014107, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27394099

RESUMO

We present a formulation of Laplace-transformed atomic orbital-based second-order Møller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.

11.
J Chem Theory Comput ; 15(7): 4170-4179, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31136706

RESUMO

The accuracy of three different complete active space (CAS) self-consistent field (CASSCF) methods is investigated for the electronically excited-state benchmark set of Schreiber , M. ; et al. J. Chem. Phys. 2008 , 128 , 134110 . Comparison of the CASSCF linear response (LR) methods MC-RPA and MC-TDA and the state-averaged (SA) CASSCF method is made for 122 singlet excitation energies and 69 oscillator strengths. Of all CASSCF methods, when considering the complete test set, MC-RPA performs best for both excitation energies and oscillator strengths with a mean absolute error (MAE) of 0.74 eV and 51%, respectively. MC-TDA and SA-CASSCF show a similar accuracy for the excitation energies with a MAE of ∼1 eV with respect to more accurate coupled cluster (CC3) excitation energies. The opposite trend is observed for the subset of n → π* excitation energies for which SA-CASSCF exhibits the least deviations (MAE 0.65 eV). By looking at s-tetrazine in more detail, we conclude that better performance for the n → π* SA-CASSCF excitation energies can be attributed to a fortunate error compensation. For oscillator strengths, SA-CASSCF performs worst for the complete test set (MAE 100%) as well as for the subsets of n → π* (MAE 192%) and π → π* excitations (MAE 84.9%). In general, CASSCF gives the worst performance for excitation energies of all excited-state ab initio methods considered so far due to lacking the major part of dynamic electron correlation, though MC-RPA and TD-DFT (BP86) show similar performance. Among all LR-type methods, LR-CASSCF oscillator strengths are the ones with the least accuracy for the same reason. As state-specific orbital relaxation effects are accounted for in LR-CASSCF, oscillator strengths are significantly more accurate than those of MS-CASPT2. Our findings should encourage further developments of response theory-based multireference methods with higher accuracy and feasibility.

12.
J Chem Theory Comput ; 12(4): 1892-904, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-26881830

RESUMO

In most organic molecules, phosphorescence has its origin in transitions from triplet exited states to the singlet ground state, which are spin-forbidden in nonrelativistic quantum mechanics. A sufficiently accurate description of phosphorescence lifetimes for molecules that contain only light elements can be achieved by treating the spin-orbit coupling (SOC) with perturbation theory (PT). We present an efficient implementation of this approach for the approximate coupled cluster singles and doubles model CC2 in combination with the resolution-of-the-identity approximation for the electron repulsion integrals. The induced oscillator strengths and phosphorescence lifetimes from SOC-PT are computed within the response theory framework. In contrast to previous work, we employ an explicitly spin-coupled basis for singlet and triplet operators. Thereby, a spin-orbital treatment can be entirely avoided for closed-shell molecules. For compounds containing only light elements, the phosphorescence lifetimes obtained with SOC-PT-CC2 are in good agreement with those of exact two-component (X2C) CC2, whereas the calculations are roughly 12 times faster than with X2C. Phosphorescence lifetimes computed for two thioketones with the SOC-PT-CC2 approach agree very well with reference results from experiment and are similar to those obtained with multireference spin-orbit configuration interaction and with X2C-CC2. An application to phosphorescent emitters for metal-free organic light-emitting diodes (OLEDs) with almost 60 atoms and more than 1800 basis functions demonstrates how the approach extends the applicability of coupled cluster methods for studying phosphorescence. The results indicate that other decay channels like vibrational relaxation may become important in such systems if lifetimes are large.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA