Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Pathog ; 13(1): e1006087, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28125732

RESUMO

HIV-1 infection is associated with an early and profound depletion of mucosal memory CD4+ T cells, a population that plays an indispensable role in the regulation of isotype switching and transepithelial transport of antibodies. In this study, we addressed whether the depletion of CD4+ T cell in HIV-1-infected individuals results in altered humoral responses specific to antigens encountered at mucosal surfaces. Comprehensive protein microarray of systemic humoral responses to intestinal microbiota demonstrated reduced IgG responses to antigens derived from Proteobacteria and Firmicutes but not Bacteroidetes. Importantly, intestinal secretions of antiretroviral therapy-treated HIV-1-infected individuals exhibited a significant elevation of IgM levels and decreased IgA/IgM and IgG/IgM ratios of antibodies specific to a variety of microbial and food antigens. The presented findings indicate reduced competence of mucosal B cells for class switch recombination from IgM to other isotypes limiting their capacity to react to changing antigenic variety in the gut lumen. Decreased availability of microbiota-specific IgA and IgG may be an important factor contributing to the translocation of microbial antigens across the intestinal mucosal barrier and their systemic dissemination that drives chronic inflammation in HIV-1-infected individuals.


Assuntos
Antígenos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Microbiota/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Doença Crônica , Alimentos , Regulação da Expressão Gênica , Infecções por HIV/virologia , Humanos , Imunidade Humoral , Imunoglobulina A/imunologia , Switching de Imunoglobulina , Imunoglobulina G/imunologia , Inflamação , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia
2.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847126

RESUMO

Idiopathic pulmonary arterial hypertension (IPAH) is considered a vasculopathy characterized by elevated pulmonary vascular resistance due to vasoconstriction and/or lung remodeling such as plexiform lesions, the hallmark of the PAH, as well as cell proliferation and vascular and angiogenic dysfunction. The serine/threonine hydroxyl-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT) has been shown to drive pulmonary arterial smooth muscle cell (PASMC) proliferation in IPAH. OGT is a cellular nutrient sensor that is essential in maintaining proper cell function through the regulation of cell signaling, proliferation, and metabolism. The aim of this study was to determine the role of OGT and O-GlcNAc in vascular and angiogenic dysfunction in IPAH. Primary isolated human control and IPAH patient PASMCs and pulmonary arterial endothelial cells (PAECs) were grown in the presence or absence of OGT inhibitors and subjected to biochemical assessments in monolayer cultures and tube formation assays, in vitro vascular sprouting 3D spheroid co-culture models, and de novo vascularization models in NODSCID mice. We showed that knockdown of OGT resulted in reduced vascular endothelial growth factor (VEGF) expression in IPAH primary isolated vascular cells. In addition, specificity protein 1 (SP1), a known stimulator of VEGF expression, was shown to have higher O-GlcNAc levels in IPAH compared to control at physiological (5 mM) and high (25 mM) glucose concentrations, and knockdown resulted in decreased VEGF protein levels. Furthermore, human IPAH PAECs demonstrated a significantly higher degree of capillary tube-like structures and increased length compared to control PAECs. Addition of an OGT inhibitor, OSMI-1, significantly reduced the number of tube-like structures and tube length similar to control levels. Assessment of vascular sprouting from an in vitro 3D spheroid co-culture model using IPAH and control PAEC/PASMCs and an in vivo vascularization model using control and PAEC-embedded collagen implants demonstrated higher vascularization in IPAH compared to control. Blocking OGT activity in these experiments, however, altered the vascular sprouting and de novo vascularization in IPAH similar to control levels when compared to controls. Our findings in this report are the first to describe a role for the OGT/O-GlcNAc axis in modulating VEGF expression and vascularization in IPAH. These findings provide greater insight into the potential role that altered glucose uptake and metabolism may have on the angiogenic process and the development of plexiform lesions. Therefore, we believe that the OGT/O-GlcNAc axis may be a potential therapeutic target for treating the angiogenic dysregulation that is present in IPAH.


Assuntos
Hipertensão Pulmonar Primária Familiar/enzimologia , N-Acetilglucosaminiltransferases/metabolismo , Neovascularização Patológica/enzimologia , Adulto , Animais , Técnicas de Cocultura , Inibidores Enzimáticos/farmacologia , Hipertensão Pulmonar Primária Familiar/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/biossíntese
3.
Microvasc Res ; 109: 1-6, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27592219

RESUMO

Microvascular barrier permeability to water is an essential biophysical property required for the homeostatic maintenance of unique tissue microenvironments. This is of particular importance in peripheral nerves where strict control of ionic concentrations is needed for axonal signal transduction. Previous studies have associated inflammation, trauma, toxin exposure and metabolic disease with increases in water influx and hydrostatic pressure in peripheral nerves with resultant endoneurial edema that may impair axonal function. The regulation of water permeability across endoneurial microvessels that form the blood-nerve barrier (BNB) is poorly understood. Variations exist in apparatus and methods used to measure hydraulic conductivity. The objective of the study was to develop a simplified hydraulic conductivity system using commercially available components to evaluate the BNB. We determined the mean hydraulic conductivity of cultured confluent primary and immortalized human endoneurial endothelial cell layers as 2.00×10-7 and 2.17×10-7cm/s/cm H2O respectively, consistent with restrictive microvascular endothelial cells in vitro. We also determined the mean hydraulic conductivity of immortalized human brain microvascular endothelial cell layers, a commonly used blood-brain barrier (BBB) cell line, as 0.20×10-7cm/s/cm H2O, implying a mean 10-fold higher resistance to transendothelial water flux in the brain compared to peripheral nerves. To our knowledge, this is the first reported measurement of human BNB and BBB hydraulic conductivities. This model represents an important tool to further characterize the human BNB and deduce the molecular determinants and signaling mechanisms responsible for BNB hydraulic conductivity in normal and disease states in vitro.


Assuntos
Barreira Hematoneural , Permeabilidade Capilar , Técnicas Citológicas , Animais , Antígenos Transformantes de Poliomavirus/imunologia , Axônios/metabolismo , Bovinos , Linhagem Celular , Permeabilidade da Membrana Celular , Citocinas/metabolismo , Células Endoteliais/citologia , Fibroblastos/metabolismo , Homeostase , Humanos , Inflamação , Camundongos , Nervos Periféricos , Permeabilidade , Ratos , Ovinos , Transdução de Sinais , Suínos , Junções Íntimas/metabolismo , Água/química
4.
PLoS Pathog ; 10(3): e1003993, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24626392

RESUMO

HIV-1 infection is associated with a progressive loss of T cell functional capacity and reduced responsiveness to antigenic stimuli. The mechanisms underlying T cell dysfunction in HIV-1/AIDS are not completely understood. Multiple studies have shown that binding of program death ligand 1 (PD-L1) on the surface of monocytes and dendritic cells to PD-1 on T cells negatively regulates T cell function. Here we show that neutrophils in the blood of HIV-1-infected individuals express high levels of PD-L1. PD-L1 is induced by HIV-1 virions, TLR-7/8 ligand, bacterial lipopolysaccharide (LPS), and IFNα. Neutrophil PD-L1 levels correlate with the expression of PD-1 and CD57 on CD4+ and CD8+ T cells, elevated levels of neutrophil degranulation markers in plasma, and increased frequency of low density neutrophils (LDNs) expressing the phenotype of granulocytic myeloid-derived suppressor cells (G-MDSCs). Neutrophils purified from the blood of HIV-1-infected patients suppress T cell function via several mechanisms including PD-L1/PD-1 interaction and production of reactive oxygen species (ROS). Collectively, the accumulated data suggest that chronic HIV-1 infection results in an induction of immunosuppressive activity of neutrophils characterized by high expression of PD-L1 and an inhibitory effect on T cell function.


Assuntos
Antígeno B7-H1/imunologia , Infecções por HIV/imunologia , Tolerância Imunológica/imunologia , Neutrófilos/imunologia , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , Humanos , Neutrófilos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais
5.
Sci Rep ; 13(1): 4898, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966182

RESUMO

An elevation in serum phosphate-also called hyperphosphatemia-is associated with reduced kidney function in chronic kidney disease (CKD). Reports show CKD patients are more likely to develop lung disease and have poorer kidney function that positively correlates with pulmonary obstruction. However, the underlying mechanisms are not well understood. Here, we report that two murine models of CKD, which both exhibit increased serum levels of phosphate and fibroblast growth factor (FGF) 23, a regulator of phosphate homeostasis, develop concomitant airway inflammation. Our in vitro studies point towards a similar increase of phosphate-induced inflammatory markers in human bronchial epithelial cells. FGF23 stimulation alone does not induce a proinflammatory response in the non-COPD bronchial epithelium and phosphate does not cause endogenous FGF23 release. Upregulation of the phosphate-induced proinflammatory cytokines is accompanied by activation of the extracellular-signal regulated kinase (ERK) pathway. Moreover, the addition of cigarette smoke extract (CSE) during phosphate treatments exacerbates inflammation as well as ERK activation, whereas co-treatment with FGF23 attenuates both the phosphate as well as the combined phosphate- and CS-induced inflammatory response, independent of ERK activation. Together, these data demonstrate a novel pathway that potentially explains pathological kidney-lung crosstalk with phosphate as a key mediator.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Fosfatos/metabolismo , Fumar Cigarros/efeitos adversos , Inflamação/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Insuficiência Renal Crônica/complicações , Epitélio/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Células Epiteliais/metabolismo
6.
Front Immunol ; 12: 693149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290711

RESUMO

Chronic obstructive pulmonary disease (COPD) is a systemic disease strongly associated with cigarette smoking, airway inflammation, and acute disease exacerbations. Changes in terminal sialylation and fucosylation of asparagine (N)-linked glycans have been documented in COPD, but the role that glycosyltransferases may play in the regulation of N-linked glycans in COPD has not been fully elucidated. Recent studies suggest that modulation of ST6GAL1 (ST6 beta-galactoside alpha-2,6-sialyltransferase-1), which catalyzes terminal α2-6 sialylation of cellular proteins, may regulate inflammation and contribute to COPD phenotype(s). Interestingly, it has been previously demonstrated that ST6GAL1, a Golgi resident protein, can be proteolytically processed by BACE1 (beta-site amyloid precursor protein cleaving enzyme-1) to a circulating form that retains activity. In this study, we showed that loss of ST6GAL1 expression increased interleukin (IL)-6 expression and secretion in human bronchial epithelial cells (HBECs). Furthermore, exposure to cigarette smoke medium/extract (CSE) or BACE1 inhibition resulted in decreased ST6GAL1 secretion, reduced α2-6 sialylation, and increased IL-6 production in HBECs. Analysis of plasma ST6GAL1 levels in a small COPD patient cohort demonstrated an inverse association with prospective acute exacerbations of COPD (AECOPD), while IL-6 was positively associated. Altogether, these results suggest that reduced ST6GAL1 and α2-6 sialylation augments IL-6 expression/secretion in HBECs and is associated with poor clinical outcomes in COPD.


Assuntos
Antígenos CD/metabolismo , Brônquios/metabolismo , Células Epiteliais/metabolismo , Interleucina-6/metabolismo , Processamento de Proteína Pós-Traducional , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sialiltransferases/metabolismo , Idoso , Antígenos CD/sangue , Antígenos CD/genética , Biomarcadores/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Glicosilação , Humanos , Interleucina-6/sangue , Interleucina-6/genética , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/imunologia , Índice de Gravidade de Doença , Sialiltransferases/sangue , Sialiltransferases/genética , Fumaça/efeitos adversos , Produtos do Tabaco/toxicidade
7.
Tissue Barriers ; 6(2): 1-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29913111

RESUMO

There is emerging evidence that glial-derived neurotrophic factor (GDNF) is a potent inducer of restrictive barrier function in tight junction-forming microvascular endothelium and epithelium, including the human blood-nerve barrier (BNB) in vitro. We sought to determine the role of GDNF in restoring BNB function in vivo by evaluating sciatic nerve horseradish peroxidase (HRP) permeability in tamoxifen-inducible GDNF conditional knockout (CKO) adult mice following non-transecting crush injury via electron microscopy, with appropriate wildtype (WT) and heterozygous (HET) littermate controls. A total of 24 age-, genotype- and sex-matched mice >12 weeks of age were injected with 30 mg/kg HRP via tail vein injection 7 or 14 days following unilateral sciatic nerve crush, and both sciatic nerves were harvested 30 minutes later for morphometric assessment by light and electron microscopy. The number and percentage of HRP-permeable endoneurial microvessels were ascertained to determine the effect of GDNF in restoring barrier function in vivo. Following sciatic nerve crush, there was significant upregulation in GDNF protein expression in WT and HET mice that was abrogated in CKO mice. GDNF significantly restored sciatic nerve BNB HRP impermeability to near normal levels by day 7, with complete restoration seen by day 14 in WT and HET mice. A significant recovery lag was observed in CKO mice. This effect was independent on VE-Cadherin or claudin-5 expression on endoneurial microvessels. These results imply an important role of GDNF in restoring restrictive BNB function in vivo, suggesting a potential strategy to re-establish the restrictive endoneurial microenvironment following traumatic peripheral neuropathies.


Assuntos
Barreira Hematoneural/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compressão Nervosa , Regeneração Nervosa/fisiologia , Doenças do Sistema Nervoso Periférico/metabolismo , Permeabilidade , Recuperação de Função Fisiológica/fisiologia
8.
Exp Neurol ; 292: 35-45, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28215575

RESUMO

The molecular determinants of pathogenic leukocyte migration across the blood-nerve barrier (BNB) in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) are unknown. Specific disease modifying therapies for CIDP are also lacking. Fibronectin connecting segment-1 (FNCS1), an alternatively spliced fibronectin variant expressed by microvascular endothelial cells at sites of inflammation in vitro and in situ, is a counterligand for leukocyte α4 integrin (also known as CD49d) implicated in pathogenic leukocyte trafficking in multiple sclerosis and inflammatory bowel disease. We sought to determine the role of FNCS1 in CIDP patient leukocyte trafficking across the BNB in vitro and in severe chronic demyelinating neuritis in vivo using a representative spontaneous murine CIDP model. Peripheral blood mononuclear leukocytes from 7 untreated CIDP patients were independently infused into a cytokine-treated, flow-dependent in vitro BNB model system. Time-lapse digital video microscopy was performed to visualize and quantify leukocyte trafficking, comparing FNCS1 peptide blockade to relevant controls. Fifty 24-week old female B7-2 deficient non-obese diabetic mice with spontaneous autoimmune peripheral polyneuropathy (SAPP) were treated daily with 2mg/kg FNCS1 peptide for 5days via intraperitoneal injection with appropriate controls. Neurobehavioral measures of disease severity, motor nerve electrophysiology assessments and histopathological quantification of inflammation and morphometric assessment of demyelination were performed to determine in vivo efficacy. The biological relevance of FNCS1 and CD49d in CIDP was evaluated by immunohistochemical detection in affected patient sural nerve biopsies. 25µM FNCS1 peptide maximally inhibited CIDP leukocyte trafficking at the human BNB in vitro. FNCS1 peptide treatment resulted in significant improvements in disease severity, motor electrophysiological parameters of demyelination and histological measures of inflammatory demyelination. Microvessels demonstrating FNCS1 expression and CD49d+ leukocytes were seen within the endoneurium of patient nerve biopsies. Taken together, these results imply a role for FNCS1 in pathogenic leukocyte trafficking in CIDP, providing a potential target for therapeutic modulation.


Assuntos
Fibronectinas/metabolismo , Inflamação/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Peptídeos/farmacologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/tratamento farmacológico , Idoso , Animais , Movimento Celular , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Leucócitos/efeitos dos fármacos , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/patologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/metabolismo , Transporte Proteico/efeitos dos fármacos
9.
Sci Rep ; 7(1): 17477, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234067

RESUMO

The blood-nerve barrier (BNB), formed by tight junction-forming microvessels within peripheral nerve endoneurium, exists to regulate its internal microenvironment essential for effective axonal signal transduction. Relatively little is known about the unique human BNB molecular composition. Such knowledge is crucial to comprehend the relationships between the systemic circulation and peripheral nerves in health, adaptations to intrinsic or extrinsic perturbations and alterations that may result in disease. We performed RNA-sequencing on cultured early- and late-passage adult primary human endoneurial endothelial cells and laser-capture microdissected endoneurial microvessels from four cryopreserved normal adult human sural nerves referenced to the Genome Reference Consortium Human Reference 37 genome browser, using predefined criteria guided by known transcript or protein expression in vitro and in situ. We identified 12881 common transcripts associated by 125 independent biological networks, defined as the normal adult BNB transcriptome, including a comprehensive array of transporters and specialized intercellular junctional complex components. These identified transcripts and their interacting networks provide insights into peripheral nerve microvascular morphogenesis, restrictive barrier formation, influx and efflux transporters with relevance to understanding peripheral nerve homeostasis and pharmacology, including targeted drug delivery and the mediators of leukocyte trafficking in peripheral nerves during normal immunosurveillance.


Assuntos
Barreira Hematoneural/metabolismo , Transcriptoma , Adulto , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Microdissecção e Captura a Laser , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Nervo Isquiático/metabolismo , Análise de Sequência de RNA , Nervo Sural/metabolismo
10.
Endocrinology ; 154(3): 1282-95, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354099

RESUMO

Recent observational studies indicate an association between the use of hormonal contraceptives and acquisition and transmission of HIV-1. The biological and immunological mechanisms underlying the observed association are unknown. Depot medroxyprogesterone acetate (DMPA) is a progestin-only injectable contraceptive that is commonly used in regions with high HIV-1 prevalence. Here we show that medroxyprogesterone acetate (MPA) suppresses the production of key regulators of cellular and humoral immunity involved in orchestrating the immune response to invading pathogens. MPA inhibited the production of interferon (IFN)-γ, IL-2, IL-4, IL-6, IL-12, TNFα, macrophage inflammatory protein-1α (MIP-1α), and other cytokines and chemokines by peripheral blood cells and activated T cells and reduced the production of IFNα and TNFα by plasmacytoid dendritic cells in response to Toll-like receptor-7, -8, and -9 ligands. Women using DMPA displayed lower levels of IFNα in plasma and genital secretions compared with controls with no hormonal contraception. In addition, MPA prevented the down-regulation of HIV-1 coreceptors CXCR4 and CCR5 on the surface of T cells after activation and increased HIV-1 replication in activated peripheral blood mononuclear cell cultures. The presented results suggest that MPA suppresses both innate and adaptive arms of the immune system resulting in a reduction of host resistance to invading pathogens.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Anticoncepcionais Femininos/efeitos adversos , Infecções por HIV/imunologia , HIV-1 , Imunidade Inata/efeitos dos fármacos , Acetato de Medroxiprogesterona/efeitos adversos , Adulto , Animais , Quimiocinas/biossíntese , Citocinas/biossíntese , Feminino , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Imunossupressores/efeitos adversos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vagina/efeitos dos fármacos , Vagina/imunologia , Replicação Viral/efeitos dos fármacos , Adulto Jovem
11.
J Biol Chem ; 283(32): 22304-15, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18511420

RESUMO

G2E3 is a putative ubiquitin ligase (E3) identified in a microarray screen for mitotic regulatory proteins. It shuttles between the cytoplasm and nucleus, concentrating in nucleoli and relocalizing to the nucleoplasm in response to DNA damage. In this study, we demonstrate that G2E3 is an unusual ubiquitin ligase that is essential in early embryonic development to prevent apoptotic death. This protein has a catalytically inactive HECT domain and two distinct RING-like ubiquitin ligase domains that catalyze lysine 48-linked polyubiquitination. To address in vivo function, we generated a knock-out mouse model of G2E3 deficiency that incorporates a beta-galactosidase reporter gene under control of the endogenous promoter. Animals heterozygous for G2E3 inactivation are phenotypically normal with no overt change in development, growth, longevity, or fertility, whereas G2E3 null embryos die prior to implantation. Although normal numbers of G2E3(-/-) blastocysts are present at embryonic day 3.5, these blastocysts involute in culture as a result of massive apoptosis. Using beta-galactosidase staining as a marker for protein expression, we demonstrate that G2E3 is predominantly expressed within the central nervous system and the early stages of limb bud formation of the developing embryo. In adult animals, the most intense staining is found in Purkinje cell bodies and cells lining the ductus deferens. In summary, G2E3 is a dual function ubiquitin ligase essential for prevention of apoptosis in early embryogenesis.


Assuntos
Desenvolvimento Embrionário , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Genótipo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
12.
J Cell Biochem ; 100(4): 883-96, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17031865

RESUMO

The tumor suppressor p53 plays a central role in the DNA damage response. After exposure to genotoxic stress, p53 can both positively and negatively regulate cell fate. Initially, p53 promotes cell survival by inducing cell cycle arrest, DNA repair, and other pro-survival pathways. However, when cells accumulate DNA damage or demonstrate aberrant growth, p53 can direct the elimination of damaged cells. In this review, we will discuss the transcriptional-dependent and -independent roles of p53 in regulating the DNA damage response.


Assuntos
Dano ao DNA/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Reparo do DNA/fisiologia , Humanos , Modelos Biológicos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
J Biol Chem ; 281(5): 2533-42, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16319057

RESUMO

p63, a member of the p53 family of transcription factors, is known to be involved in epithelial development. However, its role in tumorigenesis is unclear. Contributing to this uncertainty, the TP63 locus can express multiple gene products from two different promoters. Utilization of the upstream promoter results in expression of the TAp63 variant with an activation domain similar to p53. In contrast, the NH2-terminally deleted (DeltaN) p63 variant, transcribed from a cryptic promoter in intron 3, lacks such an activation domain. Thus, the TAp63 and DeltaNp63 variants possess a wide ranging ability to up-regulate p53 target genes. Consequentially, the disparity in transactivation potential between p63 variants has given rise to the hypothesis that the DeltaNp63 variant can serve as oncoprotein by opposing the activity of the TAp63 variant and p53. However, recent studies have revealed a transcriptional activity for DeltaNp63. This study was undertaken to address the transcriptional activity of the DeltaNp63 variant. Here, we showed that all NH2-terminally deleted p63 isoforms retain a potential in transactivation and growth suppression. Interestingly, DeltaNp63beta possesses a remarkable ability to suppress cell proliferation and transactivate target genes, which is consistently higher than that seen with DeltaNp63alpha. In contrast, DeltaNp63gamma has a weak or undetectable activity dependent upon the cell lines used. We also demonstrate that an intact DNA-binding domain is required for DeltaNp63 function. In addition, we found that the novel activation domain for the DeltaNp63 variant is composed of the 14 unique DeltaN residues along with the adjacent region, including a PXXP motif. Finally, we demonstrated that a PPXY motif shared by DeltaNp63alpha and DeltaNp63beta is required for optimal transactivation of target gene promoters, suggesting that the PPXY motif is requisite for DeltaNp63 function.


Assuntos
Genes Supressores de Tumor/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/fisiologia , Deleção de Sequência , Transativadores/genética , Transativadores/fisiologia , Ativação Transcricional , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Humanos , Fatores de Transcrição , Proteínas Supressoras de Tumor , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA