Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 225(4): 1500-1515, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31605639

RESUMO

Recent observations suggest that repeated fires could drive Mediterranean forests to shrublands, hosting flammable vegetation that regrows quickly after fire. This feedback supposedly favours shrubland persistence and may be strengthened in the future by predicted increased aridity. An assessment was made of how fires and aridity in combination modulated the dynamics of Mediterranean ecosystems and whether the feedback could be strong enough to maintain shrubland as an alternative stable state to forest. A model was developed for vegetation dynamics, including stochastic fires and different plant fire-responses. Parameters were calibrated using observational data from a period up to 100 yr ago, from 77 sites with and without fires in Southeast Spain and Southern France. The forest state was resilient to the separate impact of fires and increased aridity. However, water stress could convert forests into open shrublands by hampering post-fire recovery, with a possible tipping point at intermediate aridity. Projected increases in aridity may reduce the resilience of Mediterranean forests against fires and drive post-fire ecosystem dynamics toward open shrubland. The main effect of increased aridity is the limitation of post-fire recovery. Including plant fire-responses is thus fundamental when modelling the fate of Mediterranean-type vegetation under climate-change scenarios.


Assuntos
Florestas , Plantas/classificação , Chuva , Incêndios Florestais , Mudança Climática , Região do Mediterrâneo , Modelos Biológicos
3.
J Invertebr Pathol ; 153: 20-29, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29425966

RESUMO

The cotton leafworm Spodoptera litura is a polyphagous insect. It has recently made a comeback as a primary insect pest of cotton in Pakistan due to reductions in pesticide use on the advent of genetically modified cotton, resistant to Helicoverpa armigera. Spodoptera litura nucleopolyhedrovirus (SpltNPV) infects S. litura and is recognized as a potential candidate to control this insect. Twenty-two NPV isolates were collected from S. litura from different agro-ecological zones (with collection sites up to 600 km apart) and cropping systems in Pakistan to see whether there is spatial dispersal and adaptation of the virus and/or adaptation to crops. Therefore, the genetic make-up and biological activity of these isolates was measured. Among the SpltNPV isolates tested for speed of kill in 3rd instar larvae of S. litura, TAX1, SFD1, SFD2 and GRW1 were significantly faster killing isolates than other Pakistani isolates. Restriction fragment length analysis of the DNA showed that the Pakistan SpltNPV isolates are all variants of a single SpltNPV biotype. The isolates could be grouped into three genogroups (A-C). The speed of kill of genogroup A viruses was higher than in group C according to a Cox' proportional hazards analysis. Sequence analysis showed that the Pakistan SpltNPV isolates are more closely related to each other than to the SpltNPV type species G2 (Pang et al., 2001). This suggests a single introduction of SpltNPV into Pakistan. The SpltNPV-PAK isolates are distinct from Spodoptera littoralis nucleopolyhedrovirus. There was a strong correlation between geographic spread and the genetic variation of SpltNPV, and a marginally significant correlation between the latter and the cropping system. The faster killing isolates may be good candidates for biological control of S. litura in Pakistan.


Assuntos
Nucleopoliedrovírus/genética , Spodoptera/virologia , Adaptação Fisiológica , Animais , Genes Virais , Genótipo , Controle Biológico de Vetores/métodos
4.
Proc Natl Acad Sci U S A ; 110(35): 14296-301, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940339

RESUMO

Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Cadeia Alimentar , Solo , Dióxido de Carbono/análise , Metano/análise , Oxigênio/análise
5.
Mol Ecol ; 24(1): 249-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25443568

RESUMO

Many parasites alter host behaviour to enhance their chance of transmission. Recently, the ecdysteroid UDP-glucosyl transferase (egt) gene from the baculovirus Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) was identified to induce tree-top disease in L. dispar larvae. Infected gypsy moth larvae died at elevated positions (hence the term tree-top disease), which is thought to promote dissemination of the virus to lower foliage. It is, however, unknown whether egt has a conserved role among baculoviruses in inducing tree-top disease. Here, we studied tree-top disease induced by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in two different host insects, Trichoplusia ni and Spodoptera exigua, and we investigated the role of the viral egt gene therein. AcMNPV induced tree-top disease in both T. ni and S. exigua larvae, although in S. exigua a moulting-dependent effect was seen. Those S. exigua larvae undergoing a larval moult during the infection process died at elevated positions, while larvae that did not moult after infection died at low positions. For both T. ni and S. exigua, infection with a mutant AcMNPV lacking egt did not change the position where the larvae died. We conclude that egt has no highly conserved role in inducing tree-top disease in lepidopteran larvae. The conclusion that egt is a 'gene for an extended phenotype' is therefore not generally applicable for all baculovirus-host interactions. We hypothesize that in some baculovirus-host systems (including LdMNPV in L. dispar), an effect of egt on tree-top disease can be observed through indirect effects of egt on moulting-related climbing behaviour.


Assuntos
Glucosiltransferases/genética , Mariposas/virologia , Nucleopoliedrovírus/genética , Fenótipo , Animais , Comportamento Animal , Deleção de Genes , Genes Virais , Larva/virologia , Nucleopoliedrovírus/enzimologia , Nucleopoliedrovírus/patogenicidade , Spodoptera/virologia
6.
Glob Chang Biol ; 21(2): 973-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25242445

RESUMO

Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.


Assuntos
Agricultura/métodos , Biodiversidade , Microbiologia do Solo , Europa (Continente)
7.
Ecol Appl ; 25(7): 1807-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26591447

RESUMO

The spread and impact of invasive species may vary over time in relation to changes in the species itself, the biological community of which it is part, or external controls on the system. We investigate whether there have been changes in dynamic regimes over the last 20 years of two invasive species in the midwestern United States, the multicolored Asian lady beetle Harmonia axyridis and the soybean aphid Aphis glycines. We show by model selection that after its 1993 invasion into the American Midwest, the year-to-year population dynamics of H. axyridis were initially governed by a logistic rule supporting gradual rise to a stable carrying capacity. After invasion of the soybean aphid in 2000, food resources at the landscape level became abundant, supporting a higher year-to-year growth rate and a higher but unstable carrying capacity, with two-year cycles in both aphid and lady beetle abundance as a consequence. During 2005-2007, farmers in the Midwest progressively increased their use of insecticides for managing A. glycines, combining prophylactic seed treatment with curative spraying based on thresholds. This human intervention dramatically reduced the soybean aphid as a major food resource for H. axyridis at landscape level and corresponded to a reverse shift towards the original logistic rule for year-to-year dynamics. Thus, we document a short episode of major predator-prey fluctuations in an important agricultural system resulting from two biological invasions that were apparently damped by widespread insecticide use. Recent advances in development of plant resistance to A. glycines in soybeans may mitigate the need for pesticidal control and achieve the same stabilization of pest and predator populations at lower cost and environmental burden.


Assuntos
Afídeos/fisiologia , Besouros/fisiologia , Inseticidas , Espécies Introduzidas , Animais , Afídeos/efeitos dos fármacos , Besouros/efeitos dos fármacos , Meio-Oeste dos Estados Unidos , Dinâmica Populacional , Fatores de Tempo
8.
J Chem Ecol ; 39(6): 752-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23689875

RESUMO

Chemical information mediates species interactions in a wide range of organisms. Yet, the effect of chemical information on population dynamics is rarely addressed. We designed a spatio-temporal parasitoid--host model to investigate the population dynamics when both the insect host and the parasitic wasp that attacks it can respond to chemical information. The host species, Drosophila melanogaster, uses food odors and aggregation pheromone to find a suitable resource for reproduction. The larval parasitoid, Leptopilina heterotoma, uses these same odors to find its hosts. We show that when parasitoids can respond to food odors, this negatively affects fruit fly population growth. However, extra parasitoid responsiveness to aggregation pheromone does not affect fruit fly population growth. Our results indicate that the use of the aggregation pheromone by D. melanogaster does not lead to an increased risk of parasitism. Moreover, the use of aggregation pheromone by the host enhances its population growth and enables it to persist at higher parasitoid densities.


Assuntos
Drosophila melanogaster/fisiologia , Drosophila melanogaster/parasitologia , Himenópteros/fisiologia , Comunicação Animal , Animais , Quimiotaxia , Interações Hospedeiro-Parasita , Larva/parasitologia , Larva/fisiologia , Modelos Biológicos , Odorantes , Feromônios/metabolismo , Dinâmica Populacional
9.
PLoS Comput Biol ; 7(6): e1002097, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21738463

RESUMO

Dose response in micro-parasite infections is usually shallower than predicted by the independent action model, which assumes that each infectious unit has a probability of infection that is independent of the presence of other infectious units. Moreover, the prevalence of mixed-genotype infections was greater than predicted by this model. No probabilistic infection model has been proposed to account for the higher prevalence of mixed-genotype infections. We use model selection within a set of four alternative models to explain high prevalence of mixed-genotype infections in combination with a shallow dose response. These models contrast dependent versus independent action of micro-parasite infectious units, and homogeneous versus heterogeneous host susceptibility. We specifically consider a situation in which genome differences between genotypes are minimal, and highly unlikely to result in genotype-genotype interactions. Data on dose response and mixed-genotype infection prevalence were collected by challenging fifth instar Spodoptera exigua larvae with two genotypes of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), differing only in a 100 bp PCR marker sequence. We show that an independent action model that includes heterogeneity in host susceptibility can explain both the shallow dose response and the high prevalence of mixed-genotype infections. Theoretical results indicate that variation in host susceptibility is inextricably linked to increased prevalence of mixed-genotype infections. We have shown, to our knowledge for the first time, how heterogeneity in host susceptibility affects mixed-genotype infection prevalence. No evidence was found that virions operate dependently. While it has been recognized that heterogeneity in host susceptibility must be included in models of micro-parasite transmission and epidemiology to account for dose response, here we show that heterogeneity in susceptibility is also a fundamental principle explaining patterns of pathogen genetic diversity among hosts in a population. This principle has potentially wide implications for the monitoring, modeling and management of infectious diseases.


Assuntos
Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/fisiologia , Mariposas/virologia , Animais , Genótipo , Larva/virologia , Modelos Biológicos , Modelos Estatísticos , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/genética , Especificidade da Espécie , Biologia de Sistemas , Vírion/fisiologia
10.
Sci Rep ; 11(1): 1061, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441697

RESUMO

In 2013, Xylella fastidiosa spp. pauca was first reported in Puglia, Italy, causing the olive quick decline syndrome (OQDS). Since then the disease has spread, prompting the initiation of management measures to contain the outbreak. Estimates of the shape of the disease front and the rate of area expansion are needed to inform management, e.g. the delineation of buffer zones. However, empirical estimates of the invasion front and the rate of spread of OQDS are not available. Here, we analysed the hundreds of thousands of records of monitoring data on disease occurrence in Puglia to estimate the shape of the invasion front and the rate of movement of the front. The robustness of estimation was checked using simulation. The shape of the front was best fitted by a logistic function while using a beta-binomial error distribution to model variability around the expected proportion of infected trees. The estimated rate of movement of the front was 10.0 km per year (95% confidence interval: 7.5-12.5 km per year). This rate of movement is at the upper limit of previous expert judgements. The shape of the front was flatter than expected. The fitted model indicates that the disease spread started approximately in 2008. This analysis underpins projections of further disease spread and the need for preparedness in areas that are still disease free.


Assuntos
Olea/microbiologia , Doenças das Plantas/microbiologia , Xylella , Itália , Modelos Biológicos , Doenças das Plantas/prevenção & controle
11.
Sci Rep ; 11(1): 10756, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031491

RESUMO

Ecologists study how populations are regulated, while scientists studying biological pest control apply population regulation processes to reduce numbers of harmful organisms: an organism (a natural enemy) is used to reduce the population density of another organism (a pest). Finding an effective biological control agent among the tens to hundreds of natural enemies of a pest is a daunting task. Evaluation criteria help in a first selection to remove clearly ineffective or risky species from the list of candidates. Next, we propose to use an aggregate evaluation criterion, the pest kill rate, to compare the pest population reduction capacity of species not eliminated during the first selection. The pest kill rate is the average daily lifetime killing of the pest by the natural enemy under consideration. Pest kill rates of six species of predators and seven species of parasitoids of Tuta absoluta were calculated and compared. Several natural enemies had pest kill rates that were too low to be able to theoretically reduce the pest population below crop damaging densities. Other species showed a high pest reduction capacity and their potential for practical application can now be tested under commercial crop production conditions.


Assuntos
Agentes de Controle Biológico/farmacologia , Mariposas/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Animais , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Espécies Introduzidas , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/parasitologia , Masculino , Mariposas/classificação , Mariposas/efeitos dos fármacos , Controle Biológico de Vetores , Densidade Demográfica , Especificidade da Espécie
12.
Ecol Evol ; 10(8): 3647-3654, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32313624

RESUMO

Environmental DNA (eDNA) is used for monitoring the occurrence of freshwater organisms. Various studies show a relation between the amount of eDNA detected and target organism abundance, thus providing a potential proxy for reconstructing population densities. However, environmental factors such as water temperature and microbial activity are known to affect the amount of eDNA present as well. In this study, we use controlled aquarium experiments using Gammarus pulex L. (Amphipoda) to investigate the relationship between the amount of detectable eDNA through time, pH, and levels of organic material. We found eDNA to degrade faster when organic material was added to the aquarium water, but that pH had no significant effect. We infer that eDNA contained inside cells and mitochondria is extra resilient against degradation, though this may not reflect actual presence of target species. These results indicate that, although estimation of population density might be possible using eDNA, measured eDNA concentration could, in the future, be corrected for local environmental conditions in order to ensure accurate comparisons.

13.
PLoS One ; 15(6): e0235247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598342

RESUMO

China reported a major outbreak of a novel coronavirus, SARS-CoV2, from mid-January till mid-March 2020. We review the epidemic virus growth and decline curves in China using a phenomenological logistic growth model to summarize the outbreak dynamics using three parameters that characterize the epidemic's timing, rate and peak. During the initial phase, the number of virus cases doubled every 2.7 days (range 2.2-4.4 across provinces). The rate of increase in the number of reported cases peaked approximately 10 days after suppression measures were started on 23-25 January 2020. The peak in the number of reported sick cases occurred on average 18 days after the start of suppression measures. From the time of starting measures till the peak, the number of cases increased by a factor 39 in the province Hubei, and by a factor 9.5 for all of China (range: 6.2-20.4 in the other provinces). Complete suppression took up to 2 months (range: 23-57d.), during which period severe restrictions, social distancing measures, testing and isolation of cases were in place. The suppression of the disease in China has been successful, demonstrating that suppression is a viable strategy to contain SARS-CoV2.


Assuntos
Controle de Doenças Transmissíveis , Infecções por Coronavirus/epidemiologia , Modelos Logísticos , Pneumonia Viral/epidemiologia , Betacoronavirus , COVID-19 , China/epidemiologia , Humanos , Pandemias , SARS-CoV-2
14.
PeerJ ; 8: e8823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274266

RESUMO

BACKGROUND: Variation in floral shapes has long fascinated biologists and its modelling enables testing of evolutionary hypotheses. Recent comparative studies that explore floral shape have largely ignored 3D floral shape. We propose quantifying floral shape by using geometric morphometrics on a virtual3D model reconstructed from 2D photographical data and demonstrate its performance in capturing shape variation. METHODS: This approach offers unique benefits to complement established imaging techniques (i) by enabling adequate coverage of the potential morphospace of large and diverse flowering-plant clades; (ii) by circumventing asynchronicity in anthesis of different floral parts; and (iii) by incorporating variation in copy number of floral organs within structures. We demonstrate our approach by analysing 90 florally-diverse species of the Southern African genus Pelargonium (Geraniaceae). We quantify Pelargonium floral shapes using 117 landmarks and show similarities in reconstructed morphospaces for nectar tube, corolla (2D datasets), and a combined virtual3D dataset. RESULTS: Our results indicate that Pelargonium species differ in floral shape, which can also vary extensively within a species. PCA results of the reconstructed virtual3D floral models are highly congruent with the separate 2D morphospaces, indicating it is an accurate, virtual, representation of floral shape. Through our approach, we find that adding the third dimension to the data is crucial to accurately interpret the manner of, as well as levels of, shape variation in flowers.

15.
Proc Biol Sci ; 276(1665): 2233-42, 2009 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-19324752

RESUMO

The 'independent action hypothesis' (IAH) states that each pathogen individual has a non-zero probability of causing host death and that pathogen individuals act independently. IAH has not been rigorously tested. In this paper, we (i) develop a probabilistic framework for testing IAH and (ii) demonstrate that, in two out of the six virus-insect pathosystems tested, IAH is supported by the data. We first show that IAH inextricably links host survivorship to the number of infecting pathogen individuals, and develop a model to predict the frequency of single- and dual-genotype infections when a host is challenged with a mixture of two genotypes. Model predictions were tested using genetically marked, near-identical baculovirus genotypes, and insect larvae from three host species differing in susceptibility. Observations in early-instar larvae of two susceptible host species support IAH, but observations in late-instar larvae of susceptible host species and larvae of a less susceptible host species were not in agreement with IAH. Hence the model is experimentally supported only in pathosystems in which the host is highly susceptible. We provide, to our knowledge, the first qualitative experimental evidence that, in such pathosystems, the action of a single virion is sufficient to cause disease.


Assuntos
Baculoviridae/genética , Baculoviridae/fisiologia , Mariposas/virologia , Animais , Genótipo , Interações Hospedeiro-Patógeno , Larva/virologia , Modelos Biológicos
16.
J Theor Biol ; 258(3): 363-70, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-18801375

RESUMO

Animal aggregation is a general phenomenon in ecological systems. Aggregations are generally considered as an evolutionary advantageous state in which members derive the benefits of mate choice and protection against natural enemies, balanced by the costs of limiting resources and intraspecific competition. Many insects use chemical information to find conspecifics and to form aggregations. In this study, we describe a spatio-temporal simulation model designed to explore and quantify the effects of the strength of chemical attraction, on the colonization ability of a fruit fly (Drosophila melanogaster) population. We found that the use of infochemicals is crucial for colonizing an area. Fruit flies subject to an Allee effect that are unable to respond to chemical information could not successfully colonize the area and went extinct within four generations. This was mainly caused by very high mortality due to the Allee effect. Even when the Allee effect did not play a role, the random dispersing population had more difficulties in colonizing the area and is doomed to extinction in the long run. When fruit flies had the ability to respond to chemical information, they successfully colonized the orchard. This happened faster, for stronger attraction to chemical information. In addition, more fruit flies were able to find the resources and the settlement on the resources was much higher. This resulted in a reduced mortality due to the Allee effect for fruit flies able to respond to chemical information. Odor-mediated aggregation thus enhances the colonization ability of D. melanogaster. Even a weak attraction to chemical information paved the way to successfully colonize the orchard.


Assuntos
Simulação por Computador , Drosophila melanogaster/fisiologia , Ecossistema , Odorantes , Comportamento Social , Animais , Frutas , Modelos Biológicos , Densidade Demográfica , Dinâmica Populacional
17.
PLoS One ; 14(11): e0225117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31774843

RESUMO

The replacement of Neanderthals by Anatomically Modern Humans has typically been attributed to environmental pressure or a superiority of modern humans with respect to competition for resources. Here we present two independent models that suggest that no such heatedly debated factors might be needed to account for the demise of Neanderthals. Starting from the observation that Neanderthal populations already were small before the arrival of modern humans, the models implement three factors that conservation biology identifies as critical for a small population's persistence, namely inbreeding, Allee effects and stochasticity. Our results indicate that the disappearance of Neanderthals might have resided in the smallness of their population(s) alone: even if they had been identical to modern humans in their cognitive, social and cultural traits, and even in the absence of inter-specific competition, Neanderthals faced a considerable risk of extinction. Furthermore, we suggest that if modern humans contributed to the demise of Neanderthals, that contribution might have had nothing to do with resource competition, but rather with how the incoming populations geographically restructured the resident populations, in a way that reinforced Allee effects, and the effects of inbreeding and stochasticity.


Assuntos
Endogamia , Homem de Neandertal/fisiologia , Animais , Evolução Biológica , Extinção Biológica , Feminino , Humanos , Modelos Biológicos , Processos Estocásticos
18.
Bull Math Biol ; 70(7): 1850-68, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18780000

RESUMO

In a companion paper (Lof et al., in Bull. Math. Biol., 2008), we describe a spatio-temporal model for insect behavior. This model includes chemical information for finding resources and conspecifics. As a model species, we used Drosophila melanogaster, because its behavior is documented comparatively well. We divide a population of Drosophila into three states: moving, searching, and settled. Our model describes the number of flies in each state, together with the concentrations of food odor and aggregation pheromone, in time and in two spatial dimensions. Thus, the model consists of 5 spatio-temporal dependent variables, together with their constituting relations. Although we tried to use the simplest submodels for the separate variables, the parameterization of the spatial model turned out to be quite difficult, even for this well-studied species. In the first part of this paper, we discuss the relevant results from the literature, and their possible implications for the parameterization of our model. Here, we focus on three essential aspects of modeling insect behavior. First, there is the fundamental discrepancy between the (lumped) measured behavioral properties (i.e., fruit fly displacements) and the (detailed) properties of the underlying mechanisms (i.e., dispersivity, sensory perception, and state transition) that are adopted as explanation. Detailed quantitative studies on insect behavior when reacting to infochemicals are scarce. Some information on dispersal can be used, but quantitative data on the transition between the three states could not be found. Second, a dose-response relation as used in human perception research is not available for the response of the insects to infochemicals; the behavioral response relations are known mostly in a qualitative manner, and the quantitative information that is available does not depend on infochemical concentration. We show how a commonly used Michaelis-Menten type dose-response relation (incorporating a saturation effect) can be adapted to the use of two different but interrelated stimuli (food odors and aggregation pheromone). Although we use all available information for its parameterization, this model is still overparameterized. Third, the spatio-temporal dispersion of infochemicals is hard to model: Modeling turbulent dispersal on a length scale of 10 m is notoriously difficult. Moreover, we have to reduce this inherently three-dimensional physical process to two dimensions in order to fit in the two-dimensional model for the insects. We investigate the consequences of this dimension reduction, and we demonstrate that it seriously affects the parameterization of the model for the infochemicals. In the second part of this paper, we present the results of a sensitivity analysis. This sensitivity analysis can be used in two manners: firstly, it tells us how general the simulation results are if variations in the parameters are allowed, and secondly, we can use it to infer which parameters need more precise quantification than is available now. It turns out that the short term outcome of our model is most sensitive to the food odor production rate and the fruit fly dispersivity. For the other parameters, the model is quite robust. The dependence of the model outcome with respect to the qualitative model choices cannot be investigated with a parameter sensitivity analysis. We conclude by suggesting some experimental setups that may contribute to answering this question.


Assuntos
Comportamento Animal/fisiologia , Drosophila melanogaster/fisiologia , Modelos Biológicos , Feromônios/fisiologia , Algoritmos , Animais , Calibragem , Ecossistema , Feminino , Masculino , Odorantes , Densidade Demográfica , Dinâmica Populacional , Reprodutibilidade dos Testes , Reprodução/fisiologia , Fatores de Tempo
19.
Bull Math Biol ; 70(7): 1827-49, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18780001

RESUMO

Animal aggregation is a general phenomenon in ecological systems. Aggregations are generally considered as an evolutionary advantageous state in which members derive the benefits of protection and mate choice, balanced by the costs of limiting resources and competition. In insects, chemical information conveyance plays an important role in finding conspecifics and forming aggregations. In this study, we describe a spatio-temporal simulation model designed to explore and quantify the effects of these infochemicals, i.e., food odors and an aggregation pheromone, on the spatial distribution of a fruit fly (Drosophila melanogaster) population, where the lower and upper limit of local population size are controlled by an Allee effect and competition. We found that during the spatial expansion and strong growth of the population, the use of infochemicals had a positive effect on population size. The positive effects of reduced mortality at low population numbers outweighed the negative effects of increased mortality due to competition. At low resource densities, attraction toward infochemicals also had a positive effect on population size during recolonization of an area after a local population crash, by decreasing the mortality due to the Allee effect. However, when the whole area was colonized and the population was large, the negative effects of competition on population size were larger than the positive effects of the reduction in mortality due to the Allee effect. The use of infochemicals thus has mainly positive effects on population size and population persistence when the population is small and during the colonization of an area.


Assuntos
Comportamento Animal/fisiologia , Drosophila melanogaster/fisiologia , Modelos Biológicos , Feromônios/fisiologia , Algoritmos , Animais , Simulação por Computador , Ecossistema , Feminino , Masculino , Odorantes , Densidade Demográfica , Dinâmica Populacional , Crescimento Demográfico , Fatores de Tempo
20.
PLoS One ; 13(4): e0187848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641517

RESUMO

In response to the increasing number of observational studies on an apparent south-north orientation in non-homing, non-migrating terrestrial mammals, we experimentally tested the alignment hypothesis using strong neodymium magnets on the resting orientation of individual cattle in Portugal. Contrary to the hypothesis, the 34 cows in the experiment showed no directional preference, neither with, nor without a strong neodymium magnet fixed to their collar. The concurrently performed 2,428 daytime observations-excluding the hottest part of the day-of 659 resting individual cattle did not show a south-north alignment when at rest either. The preferred compass orientation of these cows was on average 130 degrees from the magnetic north (i.e., south east). Cow compass orientation correlated significantly with sun direction, but not with wind direction. In as far as we can determine, this is the first experimental test on magnetic orientation in larger, non-homing, non-migrating mammals. These experimental and observational findings do not support previously published suggestions on the magnetic south-north alignment in these mammals.


Assuntos
Campos Magnéticos , Orientação , Animais , Bovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA