Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2300274, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474483

RESUMO

Nitroxide groups covalently grafted to carbon fibers are used as anchoring sites for TEMPO-terminated polymers (poly-n-butylacrylate and polystyrene) in a "graft to" surface modification strategy. All surface-modified fibers are evaluated for their physical properties, showing that several treatments have enhanced the tensile strength and Young's modulus compared to the control fibers. Up to an 18% increase in tensile strength and 12% in Young's modulus are observed. Similarly, the evaluation of interfacial shear strength in an epoxy polymer shows improvements of up to 144% relative to the control sample. Interestingly, the polymer-grafted surfaces show smaller increases in interfacial shear strength compared to surfaces modified with a small molecule only. This counterintuitive result is attributed to the incompatibility, both chemical and physical, of the grafted polymers to the surrounding epoxy matrix. Molecular dynamics simulations of the interface suggest that the diminished increase in mechanical shear strength observed for the polymer grafted surfaces may be due to the lack of exposed chain ends, whereas the small molecule grafted interface exclusively presents chain ends to the resin interface, resulting in good improvements in mechanical properties.

2.
Materials (Basel) ; 13(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422884

RESUMO

Silk fibroin is an excellent biopolymer for application in a variety of areas, such as textiles, medicine, composites and as a novel material for additive manufacturing. In this work, silk membranes were surface modified by in situ polymerization of aqueous acrylic acid, initiated by the reduction of various aryldiazonium salts with vitamin C. Treatment times of 20 min gave membranes which possessed increased tensile strength, tensile modulus, and showed significant increased resistance to needle puncture (+131%), relative to 'untreated' standards. Most interestingly, the treated silk membranes were able to be reversibly formed into various shapes via the hydration and plasticizing of the surface bound poly(acrylic acid), by simply steaming the modified membranes. These membranes and their unique properties have potential applications in advanced textiles, and as medical materials.

3.
ACS Appl Mater Interfaces ; 11(44): 41617-41625, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31601101

RESUMO

Colored and color-changing materials are central to perception and interaction in nature and have been exploited in an array of modern technologies such as sensors, visual displays, and smart materials. Attempts to introduce color into carbon fiber materials have been limited by deleterious impacts on fiber properties, and the extension of colored fibers toward "smart composites" remains in its infancy. We present carbon fibers incorporating structural color, similar to that observed on the surface of soap bubbles and various insects and birds, by modifying the fiber surface through in situ polymerization grafting. When dry, the treated fibers exhibit a striking blue color, but when exposed to a volatile solvent, a cascade of colors across the visible light region is observed as the film first swells and then shrinks as the solvent evaporates. The treated fibers not only possess a unique color and color-changing ability but also can be reversibly formed into complex shapes and bear significant loads even without being encased in a supporting polymer. The tensile strength of treated fibers shows a statistically significant increase (+12%), and evaluation of the fiber-to-matrix adhesion of these polymers to an epoxy resin shows more than 300% improvement over control fibers. This approach creates a new platform for the multifaceted advance of smart composites.


Assuntos
Fibra de Carbono/química , Resinas Acrílicas/química , Adesivos/química , Cor , Compostos de Diazônio/química , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Resistência ao Cisalhamento , Solventes/química , Propriedades de Superfície , Resistência à Tração
4.
Materials (Basel) ; 11(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235882

RESUMO

Testing methodologies to accurately quantify interfacial shear strength (IFSS) are essential in order to understand fiber-matrix adhesion. While testing methods at a microscale (single filament fragmentation test-SFFT) and macroscale (Short Beam Shear-SBS) are wide spread, each have their own shortcomings. The Iosipescu (V-notch) tow test offers a mesoscale bridge between the microscale and macroscale whilst providing simple, accurate results with minimal time investment. However, the lack of investigations exploring testing variables has limited the application of Iosipescu testing to only a handful of studies. This paper assesses the effect of carbon fiber tow size within the Iosipescu tow test for epoxy resin. Tow sizes of 3, 6, and 9 k are eminently suitable, while more caution must be shown when examining 12, and 15 k tows. In this work, tows at 18 and 24 k demonstrated failure modes not derived from interfacial failure, but poor fiber wetting. A catalogue of common fracture geometries is discussed as a function of performance for the benefit of future researchers. Finally, a comparison of commercial (T300), amine (T300-Amine), and ethyl ester (T300-Ester) surface modified carbon fibers was conducted. The outcomes of this study showed that the Iosipescu tow test is inherently less sensitive in distinguishing between similar IFSS but provides a more 'real world' image of the carbon fiber-epoxy interface in a composite material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA