Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(5): 986-1002.e9, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182480

RESUMO

Upon fertilization, embryos undergo chromatin reprogramming and genome activation; however, the mechanisms that regulate these processes are poorly understood. Here, we generated a triple mutant for Nanog, Pou5f3, and Sox19b (NPS) in zebrafish and found that NPS pioneer chromatin opening at >50% of active enhancers. NPS regulate acetylation across core histones at enhancers and promoters, and their function in gene activation can be bypassed by recruiting histone acetyltransferase to individual genes. NPS pioneer chromatin opening individually, redundantly, or additively depending on sequence context, and we show that high nucleosome occupancy facilitates NPS pioneering activity. Nucleosome position varies based on the input of different transcription factors (TFs), providing a flexible platform to modulate pioneering activity. Altogether, our results illuminate the sequence of events during genome activation and offer a conceptual framework to understand how pioneer factors interpret the genome and integrate different TF inputs across cell types and developmental transitions.


Assuntos
Cromatina , Nucleossomos , Animais , Cromatina/genética , Genoma/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
J Am Soc Nephrol ; 24(9): 1424-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23766537

RESUMO

Direct reprogramming involves the enforced re-expression of key transcription factors to redefine a cellular state. The nephron progenitor population of the embryonic kidney gives rise to all cells within the nephron other than the collecting duct through a mesenchyme-to-epithelial transition, but this population is exhausted around the time of birth. Here, we sought to identify the conditions under which adult proximal tubule cells could be directly transcriptionally reprogrammed to nephron progenitors. Using a combinatorial screen for lineage-instructive transcription factors, we identified a pool of six genes (SIX1, SIX2, OSR1, EYA1, HOXA11, and SNAI2) that activated a network of genes consistent with a cap mesenchyme/nephron progenitor phenotype in the adult proximal tubule (HK2) cell line. Consistent with these reprogrammed cells being nephron progenitors, we observed differential contribution of the reprogrammed population into the Six2(+) nephron progenitor fields of an embryonic kidney explant. Dereplication of the pool suggested that SNAI2 can suppress E-CADHERIN, presumably assisting in the epithelial-to-mesenchymal transition (EMT) required to form nephron progenitors. However, neither TGFß-induced EMT nor SNAI2 overexpression alone was sufficient to create this phenotype, suggesting that additional factors are required. In conclusion, these results suggest that reinitiation of kidney development from a population of adult cells by generating embryonic progenitors may be feasible, opening the way for additional cellular and bioengineering approaches to renal repair and regeneration.


Assuntos
Diferenciação Celular/fisiologia , Túbulos Renais Proximais/citologia , Néfrons/embriologia , Células-Tronco/citologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/genética , Caderinas/genética , Caderinas/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Testes Genéticos/métodos , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Túbulos Renais Proximais/fisiologia , Néfrons/citologia , Fenótipo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
3.
Dev Cell ; 59(7): 830-840.e4, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38377991

RESUMO

Tissue repair requires a highly coordinated cellular response to injury. In the lung, alveolar type 2 cells (AT2s) act as stem cells to replenish both themselves and alveolar type 1 cells (AT1s); however, the complex orchestration of stem cell activity after injury is poorly understood. Here, we establish longitudinal imaging of AT2s in murine intact tissues ex vivo and in vivo in order to track their dynamic behavior over time. We discover that a large fraction of AT2s become motile following injury and provide direct evidence for their migration between alveolar units. High-resolution morphokinetic mapping of AT2s further uncovers the emergence of distinct motile phenotypes. Inhibition of AT2 migration via genetic depletion of ArpC3 leads to impaired regeneration of AT2s and AT1s in vivo. Together, our results establish a requirement for stem cell migration between alveolar units and identify properties of stem cell motility at high cellular resolution.


Assuntos
Células Epiteliais Alveolares , Pulmão , Camundongos , Animais , Pulmão/fisiologia , Células Epiteliais Alveolares/metabolismo , Células-Tronco/metabolismo , Movimento Celular , Diferenciação Celular/fisiologia
4.
Kidney Int ; 82(2): 138-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22437414

RESUMO

Nuclear reprogramming has reshaped stem cell science and created new avenues for cell-based therapies. The ability to bestow any given phenotype upon adult cells regardless of their origin is an exciting possibility. How can this powerful tool be harnessed for the treatment of kidney disease? Many approaches, including induced pluripotent stem cell (iPSC) production, direct lineage conversion, and reprogramming to a kidney progenitor, are now possible. Indeed, the generation of iPSC lines from adult kidney-derived cells has been successfully achieved. This, however, is just the beginning of the challenge. This review will discuss the fundamental concepts of transcription factor-based reprogramming in its various forms, highlighting recent advances in the field and how these are applicable to the kidney. The relative merits of each approach will be discussed in the context of what is a realistic and feasible strategy for kidney regeneration via reprogramming.


Assuntos
Reprogramação Celular , Nefropatias/terapia , Rim/fisiopatologia , Regeneração/genética , Medicina Regenerativa , Células-Tronco , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Rim/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Fenótipo , Células-Tronco/metabolismo , Células-Tronco/patologia
5.
Cell Stem Cell ; 13(2): 205-18, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23770078

RESUMO

Definitive hematopoiesis emerges during embryogenesis via an endothelial-to-hematopoietic transition. We attempted to induce this process in mouse fibroblasts by screening a panel of factors for hemogenic activity. We identified a combination of four transcription factors, Gata2, Gfi1b, cFos, and Etv6, that efficiently induces endothelial-like precursor cells, with the subsequent appearance of hematopoietic cells. The precursor cells express a human CD34 reporter, Sca1, and Prominin1 within a global endothelial transcription program. Emergent hematopoietic cells possess nascent hematopoietic stem cell gene-expression profiles and cell-surface phenotypes. After transgene silencing and reaggregation culture, the specified cells generate hematopoietic colonies in vitro. Thus, we show that a simple combination of transcription factors is sufficient to induce a complex, dynamic, and multistep developmental program in vitro. These findings provide insights into the specification of definitive hemogenesis and a platform for future development of patient-specific stem and progenitor cells, as well as more-differentiated blood products.


Assuntos
Fibroblastos/metabolismo , Hematopoese , Animais , Biomarcadores/metabolismo , Agregação Celular , Linhagem da Célula/genética , Membrana Celular/metabolismo , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Hematopoese/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA