Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(6): 1069-1082, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34022130

RESUMO

BCAS3 microtubule-associated cell migration factor (BCAS3) is a large, highly conserved cytoskeletal protein previously proposed to be critical in angiogenesis and implicated in human embryogenesis and tumorigenesis. Here, we established BCAS3 loss-of-function variants as causative for a neurodevelopmental disorder. We report 15 individuals from eight unrelated families with germline bi-allelic loss-of-function variants in BCAS3. All probands share a global developmental delay accompanied by pyramidal tract involvement, microcephaly, short stature, strabismus, dysmorphic facial features, and seizures. The human phenotype is less severe compared with the Bcas3 knockout mouse model and cannot be explained by angiogenic defects alone. Consistent with being loss-of-function alleles, we observed absence of BCAS3 in probands' primary fibroblasts. By comparing the transcriptomic and proteomic data based on probands' fibroblasts with those of the knockout mouse model, we identified similar dysregulated pathways resulting from over-representation analysis, while the dysregulation of some proposed key interactors could not be confirmed. Together with the results from a tissue-specific Drosophila loss-of-function model, we demonstrate a vital role for BCAS3 in neural tissue development.


Assuntos
Mutação com Perda de Função , Perda de Heterozigosidade , Proteínas de Neoplasias/genética , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Adulto , Animais , Movimento Celular , Criança , Pré-Escolar , Drosophila , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Proteoma/análise , Adulto Jovem
2.
Mov Disord ; 39(6): 965-974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509638

RESUMO

BACKGROUND: Patient-focused outcomes present a central need for trial-readiness across all ataxias. The Activities of Daily Living part of the Friedreich Ataxia Rating Scale (FARS-ADL) captures functional impairment and longitudinal change but is only validated in Friedreich Ataxia. OBJECTIVE: Validation of FARS-ADL regarding disease severity and patient-meaningful impairment, and its sensitivity to change across genetic ataxias. METHODS: Real-world registry data of FARS-ADL in 298 ataxia patients across genotypes were analyzed, including (1) cross-correlation with FARS-stage, Scale for the Assessment and Rating of Ataxia (SARA), Patient-Reported Outcome Measure (PROM)-ataxia, and European Quality of Life 5 Dimensions visual analogue scale (EQ5D-VAS); (2) sensitivity to change within a trial-relevant 1-year median follow-up, anchored in Patient Global Impression of Change (PGI-C); and (3) general linear modeling of factors age, sex, and depression (nine-item Patient Health Questionnaire [PHQ-9]). RESULTS: FARS-ADL correlated with overall disability (rhoFARS-stage = 0.79), clinical disease severity (rhoSARA = 0.80), and patient-reported impairment (rhoPROM-ataxia = 0.69, rhoEQ5D-VAS = -0.37), indicating comprehensive construct validity. Also at item level, and validated within genotype (SCA3, RFC1), FARS-ADL correlated with the corresponding SARA effector domains; and all items correlated to EQ5D-VAS quality of life. FARS-ADL was sensitive to change at a 1-year interval, progressing only in patients with worsening PGI-C. Minimal important change was 1.1. points based on intraindividual variability in patients with stable PGI-C. Depression was captured using FARS-ADL (+0.3 points/PHQ-9 count) and EQ5D-VAS, but not FARS-stage or SARA. CONCLUSION: FARS-ADL reflects both disease severity and patient-meaningful impairment across genetic ataxias, with sensitivity to change in trial-relevant timescales in patients perceiving change. It thus presents a promising patient-focused outcome for upcoming ataxia trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Atividades Cotidianas , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Qualidade de Vida , Medidas de Resultados Relatados pelo Paciente , Ataxia/fisiopatologia , Ataxia/diagnóstico , Ataxia de Friedreich/fisiopatologia , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Reprodutibilidade dos Testes , Idoso , Sistema de Registros , Adulto Jovem , Diferença Mínima Clinicamente Importante
3.
Brain ; 146(3): 1093-1102, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472722

RESUMO

This cohort study aimed to characterize the prodromal phase of hereditary spastic paraplegia type 4 (SPG4) using biomarkers and clinical signs and symptoms that develop before manifest gait abnormalities. Fifty-six first-degree relatives at risk of developing SPG4 underwent blinded genotyping and standardized phenotyping, including the Spastic Paraplegia Rating Scale (SPRS), complicating symptoms, non-motor affection, Three-Minute Walk, and neurophysiological assessment. Automated MR image analysis was used to compare volumetric properties. CSF of 33 probands was analysed for neurofilament light chain (NfL), tau, and amyloid-ß (Aß). Thirty participants turned out to be SPAST mutation carriers, whereas 26 did not inherit a SPAST mutation. Increased reflexes, ankle clonus, and hip abduction weakness were more frequent in prodromal mutation carriers but were also observed in non-mutation carriers. Only Babinski's sign differentiated reliably between the two groups. Timed walk and non-motor symptoms did not differ between groups. Whereas most mutation carriers had total SPRS scores of 2 points or more, only two non-mutation carriers reached more than 1 point. Motor evoked potentials revealed no differences between mutation and non-mutation carriers. We found NfL but not tau or Aß to rise in CSF of mutation carriers when approaching the time point of predicted disease manifestation. Serum NfL did not differ between groups. Volumetric MRI analyses did not reveal group differences apart from a smaller cingulate gyrus in mutation carriers. This study depicts subtle clinical signs which develop before gait abnormalities in SPG4. Long-term follow-up is needed to study the evolution of SPG4 in the prodromal stage and conversion into manifest disease. NfL in CSF is a promising fluid biomarker that may indicate disease activity in prodromal SPG4 but needs further evaluation in longitudinal studies.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Estudos de Coortes , Paraplegia/genética , Mutação/genética , Peptídeos beta-Amiloides/genética , Espastina/genética
4.
Radiol Med ; 129(3): 478-487, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349416

RESUMO

INTRODUCTION: Low back pain is a global health issue causing disability and missed work days. Commonly used MRI scans including T1-weighted and T2-weighted images provide detailed information of the spine and surrounding tissues. Artificial intelligence showed promise in improving image quality and simultaneously reducing scan time. This study evaluates the performance of deep learning (DL)-based T2 turbo spin-echo (TSE, T2DLR) and T1 TSE (T1DLR) in lumbar spine imaging regarding acquisition time, image quality, artifact resistance, and diagnostic confidence. MATERIAL AND METHODS: This retrospective monocentric study included 60 patients with lower back pain who underwent lumbar spinal MRI between February and April 2023. MRI parameters and DL reconstruction (DLR) techniques were utilized to acquire images. Two neuroradiologists independently evaluated image datasets based on various parameters using a 4-point Likert scale. RESULTS: Accelerated imaging showed significantly less image noise and artifacts, as well as better image sharpness, compared to standard imaging. Overall image quality and diagnostic confidence were higher in accelerated imaging. Relevant disk herniations and spinal fractures were detected in both DLR and conventional images. Both readers favored accelerated imaging in the majority of examinations. The lumbar spine examination time was cut by 61% in accelerated imaging compared to standard imaging. CONCLUSION: In conclusion, the utilization of deep learning-based image reconstruction techniques in lumbar spinal imaging resulted in significant time savings of up to 61% compared to standard imaging, while also improving image quality and diagnostic confidence. These findings highlight the potential of these techniques to enhance efficiency and accuracy in clinical practice for patients with lower back pain.


Assuntos
Aprendizado Profundo , Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Inteligência Artificial , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Vértebras Lombares/diagnóstico por imagem , Artefatos , Processamento de Imagem Assistida por Computador/métodos
5.
Eur J Neurol ; 30(9): 2854-2858, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271829

RESUMO

BACKGROUND AND PURPOSE: Adult onset neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder with a heterogeneous clinical presentation that can mimic stroke and various forms of dementia. To date, it has been described almost exclusively in Asian individuals. METHODS: This case presentation includes magnetic resonance imaging (MRI) of the neurocranium, histology by skin biopsy, and long-read genome sequencing. RESULTS: A 75-year-old Caucasian female presented with paroxysmal encephalopathy twice within a 14-month period. Brain MRI revealed high-intensity signals at the cerebral corticomedullary junction (diffusion-weighted imaging) and the paravermal area (fluid-attenuated inversion recovery), a typical distribution observed in adult onset NIID. The diagnosis was corroborated by skin biopsy, which demonstrated eosinophilic intranuclear inclusion bodies, and confirmed by long-read genome sequencing, showing an expansion of the GGC repeat in exon 1 of NOTCH2NLC. CONCLUSIONS: Our case proves adult onset NOTCH2NLC-GGC-positive NIID with typical findings on MRI and histology in a Caucasian patient and underscores the need to consider this diagnosis in non-Asian individuals.


Assuntos
Corpos de Inclusão Intranuclear , Doenças Neurodegenerativas , Adulto , Humanos , Feminino , Idoso , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
6.
Genet Med ; 24(10): 2079-2090, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986737

RESUMO

PURPOSE: Biallelic variants in UCHL1 have been associated with a progressive early-onset neurodegenerative disorder, autosomal recessive spastic paraplegia type 79. In this study, we investigated heterozygous UCHL1 variants on the basis of results from cohort-based burden analyses. METHODS: Gene-burden analyses were performed on exome and genome data of independent cohorts of patients with hereditary ataxia and spastic paraplegia from Germany and the United Kingdom in a total of 3169 patients and 33,141 controls. Clinical data of affected individuals and additional independent families were collected and evaluated. Patients' fibroblasts were used to perform mass spectrometry-based proteomics. RESULTS: UCHL1 was prioritized in both independent cohorts as a candidate gene for an autosomal dominant disorder. We identified a total of 34 cases from 18 unrelated families, carrying 13 heterozygous loss-of-function variants (15 families) and an inframe insertion (3 families). Affected individuals mainly presented with spasticity (24/31), ataxia (28/31), neuropathy (11/21), and optic atrophy (9/17). The mass spectrometry-based proteomics showed approximately 50% reduction of UCHL1 expression in patients' fibroblasts. CONCLUSION: Our bioinformatic analysis, in-depth clinical and genetic workup, and functional studies established haploinsufficiency of UCHL1 as a novel disease mechanism in spastic ataxia.


Assuntos
Ataxia Cerebelar , Atrofia Óptica , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Ubiquitina Tiolesterase , Ataxia/genética , Ataxia Cerebelar/genética , Humanos , Mutação com Perda de Função , Espasticidade Muscular/genética , Mutação , Atrofia Óptica/genética , Linhagem , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Ubiquitina Tiolesterase/genética
7.
Mol Genet Metab ; 137(3): 273-282, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36240581

RESUMO

OBJECTIVES: Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficiency of arylsulfatase A (ARSA). Subsequent accumulation of sulfatides leads to demyelination and neurodegeneration in the central and peripheral nervous system. To date MLD is classified based on the age at onset, however, especially for late onset forms this classification provides only limited projection regarding the clinical disease course. Moreover, evolving newborn screening approaches raise the need to predict the disease onset and course in pre-symptomatic individuals. Here, we correlate the ARSA activity and the ARSA-genotype with clinical parameters in a large cohort of 96 affected individuals. MATERIALS AND METHODS: Clinical data of 96 affected individuals with genetically and/or biochemically confirmed MLD were collected from a national database. Leukocyte samples from 69 affected individuals were re-analyzed for the ARSA activity using p-nitrocatecholsulfate as substrate with a refined ARSA assay towards the lower limit of detection. For 84 individuals genetic sequencing was conducted by Sanger or next generation sequencing (NGS). RESULTS: The adapted ARSA assay revealed the discriminatory power to differentiate MLD subtypes as the residual enzyme activity was low in late infantile and early juvenile forms, and clearly higher in late juvenile and adult MLD (p < 0.001). A residual enzyme activity below 1% compared to controls predicted an early onset (late-infantile or early-juvenile) and rapid disease progression. A firm genotype-phenotype correlation was proven as reliable for bi-allelic protein-truncating variants in the ARSA gene resulting in minimal residual ARSA activity, an early onset of the disease and initial decline of motor functions. Although the impact of missense variants was equivocal, few variants with a recognizable clinical spectrum were identified. DISCUSSION: ARSA activity in leukocytes as well as the ARSA genotype can predict the age of disease onset and the dynamic of disease progression for most of the early onset forms. This knowledge is relevant for patient counseling and to guide treatment decisions, especially when identifying pre-symptomatic individuals, e.g., in newborn screening. However, due to the high cumulative frequency of rare disease-causing missense variants in the ARSA gene that lead to highly variable residual enzyme activity, reiterated biochemical and genetic studies are needed to improve disease course prediction.


Assuntos
Cerebrosídeo Sulfatase , Leucodistrofia Metacromática , Humanos , Cerebrosídeo Sulfatase/genética , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Genótipo , Fenótipo , Progressão da Doença
8.
Mov Disord ; 37(11): 2295-2301, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36043376

RESUMO

Measures of step variability and body sway during gait have shown to correlate with clinical ataxia severity in several cross-sectional studies. However, to serve as a valid progression biomarker, these gait measures have to prove their sensitivity to robustly capture longitudinal change, ideally within short time frames (eg, 1 year). We present the first multicenter longitudinal gait analysis study in spinocerebellar ataxias. We performed a combined cross-sectional (n = 28) and longitudinal (1-year interval, n = 17) analysis in Spinocerebellar Ataxia type 3 subjects (including seven preataxic mutation carriers). Longitudinal analysis showed significant change in gait measures between baseline and 1-year follow-up, with high effect sizes (stride length variability: P = 0.01, effect size rprb  = 0.66; lateral sway: P = 0.007, rprb  = 0.73). Sample size estimation for lateral sway indicates a required cohort size of n = 43 for detecting a 50% reduction of natural progression, compared with n = 240 for the clinical ataxia score Scale for the Assessment and Rating of Ataxia (SARA). These measures thus present promising motor biomarkers for upcoming interventional studies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/diagnóstico , Estudos Transversais , Progressão da Doença , Marcha , Ataxia , Biomarcadores
9.
Mov Disord ; 37(2): 405-410, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713931

RESUMO

BACKGROUND: Lifestyle could influence the course of hereditary ataxias, but representative data are missing. OBJECTIVE: The objective of this study was to characterize lifestyle in spinocerebellar ataxia type 3 (SCA3) and investigate possible associations with disease parameters. METHODS: In a prospective cohort study, data on smoking, alcohol consumption, physical activity, physiotherapy, and body mass index (BMI) were collected from 243 patients with SCA3 and 119 controls and tested for associations with age of onset, disease severity, and progression. RESULTS: Compared with controls, patients with SCA3 were less active and consumed less alcohol. Less physical activity and alcohol abstinence were associated with more severe disease, but not with progression rates or age of onset. Smoking, BMI, or physiotherapy did not correlate with disease parameters. CONCLUSION: Differences in lifestyle factors of patients with SCA3 and controls as well as associations of lifestyle factors with disease severity are likely driven by the influence of symptoms on behavior. No association between lifestyle and disease progression was detected. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Ataxias Espinocerebelares , Humanos , Estilo de Vida , Estudos Prospectivos , Índice de Gravidade de Doença , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/epidemiologia
10.
Brain ; 144(2): 574-583, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33459760

RESUMO

The von Willebrand Factor A domain containing 1 protein, encoded by VWA1, is an extracellular matrix protein expressed in muscle and peripheral nerve. It interacts with collagen VI and perlecan, two proteins that are affected in hereditary neuromuscular disorders. Lack of VWA1 is known to compromise peripheral nerves in a Vwa1 knock-out mouse model. Exome sequencing led us to identify bi-allelic loss of function variants in VWA1 as the molecular cause underlying a so far genetically undefined neuromuscular disorder. We detected six different truncating variants in 15 affected individuals from six families of German, Arabic, and Roma descent. Disease manifested in childhood or adulthood with proximal and distal muscle weakness predominantly of the lower limbs. Myopathological and neurophysiological findings were indicative of combined neurogenic and myopathic pathology. Early childhood foot deformity was frequent, but no sensory signs were observed. Our findings establish VWA1 as a new disease gene confidently implicated in this autosomal recessive neuromyopathic condition presenting with child-/adult-onset muscle weakness as a key clinical feature.


Assuntos
Proteínas da Matriz Extracelular/genética , Doenças Neuromusculares/genética , Adolescente , Adulto , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Doenças Neuromusculares/patologia , Linhagem , Sequenciamento do Exoma
11.
J Lipid Res ; 62: 100078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33891937

RESUMO

Cerebrotendinous xanthomatosis (CTX) is caused by autosomal recessive loss-of-function mutations in CYP27A1, a gene encoding cytochrome p450 oxidase essential for bile acid synthesis, resulting in altered bile acid and lipid metabolism. Here, we aimed to identify metabolic aberrations that drive ongoing neurodegeneration in some patients with CTX despite chenodeoxycholic acid (CDCA) supplementation, the standard treatment in CTX. Using chromatographic separation techniques coupled to mass spectrometry, we analyzed 26 sterol metabolites in serum and cerebrospinal fluid (CSF) of patients with CTX and in one CTX brain. Comparing samples of drug naive patients to patients treated with CDCA and healthy controls, we identified 7α,12α-dihydroxycholest-4-en-3-one as the most prominently elevated metabolite in serum and CSF of drug naive patients. CDCA treatment substantially reduced or even normalized levels of all metabolites increased in untreated patients with CTX. Independent of CDCA treatment, metabolites of the 27-hydroxylation pathway were nearly absent in all patients with CTX. 27-hydroxylated metabolites accounted for ∼45% of total free sterol content in CSF of healthy controls but <2% in patients with CTX. Metabolic changes in brain tissue corresponded well with findings in CSF. Interestingly, 7α,12α-dihydroxycholest-4-en-3-one and 5α-cholestanol did not exert toxicity in neuronal cell culture. In conclusion, we propose that increased 7α,12α-dihydroxycholest-4-en-3-one and lack of 27-hydroxycholesterol may be highly sensitive metabolic biomarkers of CTX. As CDCA cannot reliably prevent disease progression despite reduction of most accumulated metabolites, supplementation of 27-hydroxylated bile acid intermediates or replacement of CYP27A1 might be required to counter neurodegeneration in patients with progressive disease despite CDCA treatment.


Assuntos
Xantomatose Cerebrotendinosa
12.
Mov Disord ; 36(11): 2675-2681, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34397117

RESUMO

BACKGROUND: Spinocerebellar ataxia type 3 is a rare neurodegenerative disease caused by a CAG repeat expansion in the ataxin-3 gene. Although no curative therapy is yet available, preclinical gene-silencing approaches to reduce polyglutamine (polyQ) toxicity demonstrate promising results. In view of upcoming clinical trials, quantitative and easily accessible molecular markers are of critical importance as pharmacodynamic and particularly as target engagement markers. OBJECTIVE: We aimed at developing an ultrasensitive immunoassay to measure specifically polyQ-expanded ataxin-3 in plasma and cerebrospinal fluid (CSF). METHODS: Using the novel single molecule counting ataxin-3 immunoassay, we analyzed cross-sectional and longitudinal patient biomaterials. RESULTS: Statistical analyses revealed a correlation with clinical parameters and a stability of polyQ-expanded ataxin-3 during conversion from the pre-ataxic to the ataxic phases. CONCLUSIONS: The novel immunoassay is able to quantify polyQ-expanded ataxin-3 in plasma and CSF, whereas ataxin-3 levels in plasma correlate with disease severity. Longitudinal analyses demonstrated a high stability of polyQ-expanded ataxin-3 over a short period. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Ataxina-3/genética , Estudos Transversais , Humanos , Doença de Machado-Joseph/tratamento farmacológico , Doença de Machado-Joseph/genética , Peptídeos
13.
Mov Disord ; 36(10): 2273-2281, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33951232

RESUMO

BACKGROUND: Given that new therapeutic options for spinocerebellar ataxias are on the horizon, there is a need for markers that reflect disease-related alterations, in particular, in the preataxic stage, in which clinical scales are lacking sensitivity. OBJECTIVE: The objective of this study was to quantify regional brain volumes and upper cervical spinal cord areas in spinocerebellar ataxia type 3 in vivo across the entire time course of the disease. METHODS: We applied a brain segmentation approach that included a lobular subsegmentation of the cerebellum to magnetic resonance images of 210 ataxic and 48 preataxic spinocerebellar ataxia type 3 mutation carriers and 63 healthy controls. In addition, cervical cord cross-sectional areas were determined at 2 levels. RESULTS: The metrics of cervical spinal cord segments C3 and C2, medulla oblongata, pons, and pallidum, and the cerebellar anterior lobe were reduced in preataxic mutation carriers compared with controls. Those of cervical spinal cord segments C2 and C3, medulla oblongata, pons, midbrain, cerebellar lobules crus II and X, cerebellar white matter, and pallidum were reduced in ataxic compared with nonataxic carriers. Of all metrics studied, pontine volume showed the steepest decline across the disease course. It covaried with ataxia severity, CAG repeat length, and age. The multivariate model derived from this analysis explained 46.33% of the variance of pontine volume. CONCLUSION: Regional brain and spinal cord tissue loss in spinocerebellar ataxia type 3 starts before ataxia onset. Pontine volume appears to be the most promising imaging biomarker candidate for interventional trials that aim at slowing the progression of spinocerebellar ataxia type 3. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Machado-Joseph , Ataxias Espinocerebelares , Encéfalo/diagnóstico por imagem , Cerebelo , Humanos , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética
14.
Genet Med ; 21(11): 2521-2531, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31092906

RESUMO

PURPOSE: Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established. METHODS: Here, we study five individuals with myopathy of variable severity from four unrelated consanguineous couples. Exome sequencing identified pathogenic variants in the PAX7 gene. Clinical examination, laboratory tests, and muscle biopsies were performed to characterize the disease. RESULTS: The disease was characterized by hypotonia, ptosis, muscular atrophy, scoliosis, and mildly dysmorphic facial features. The disease spectrum ranged from mild to severe and appears to be progressive. Muscle biopsies showed the presence of atrophic fibers and fibroadipose tissue replacement, with the absence of myofiber necrosis. A lack of PAX7 expression was associated with satellite cell pool exhaustion; however, the presence of residual myoblasts together with regenerating myofibers suggest that a population of PAX7-independent myogenic cells partially contributes to muscle regeneration. CONCLUSION: These findings show that biallelic variants in the master transcription factor PAX7 cause a new type of myopathy that specifically affects satellite cell survival.


Assuntos
Doenças Musculares/genética , Fator de Transcrição PAX7/genética , Adolescente , Alelos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/etiologia , Mioblastos , Fator de Transcrição PAX7/metabolismo , Linhagem , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Fatores de Transcrição/genética , Sequenciamento do Exoma/métodos
15.
Mov Disord ; 34(8): 1220-1227, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31211461

RESUMO

BACKGROUND: Spinocerebellar ataxias are rare dominantly inherited neurodegenerative diseases that lead to severe disability and premature death. OBJECTIVE: To quantify the impact of disease progression measured by the Scale for the Assessment and Rating of Ataxia on survival, and to identify different profiles of disease progression and survival. METHODS: Four hundred sixty-two spinocerebellar ataxia patients from the EUROSCA prospective cohort study, suffering from spinocerebellar ataxia type 1, spinocerebellar ataxia type 2, spinocerebellar ataxia type 3, and spinocerebellar ataxia type 6, and who had at least two measurements of Scale for the Assessment and Rating of Ataxia score, were analyzed. Outcomes were change over time in Scale for the Assessment and Rating of Ataxia score and time to death. Joint model was used to analyze disease progression and survival. RESULTS: Disease progression was the strongest predictor for death in all genotypes: An increase of 1 standard deviation in total Scale for the Assessment and Rating of Ataxia score increased the risk of death by 1.28 times (95% confidence interval: 1.18-1.38) for patients with spinocerebellar ataxia type 1; 1.19 times (1.12-1.26) for spinocerebellar ataxia type 2; 1.30 times (1.19-1.42) for spinocerebellar ataxia type 3; and 1.26 times (1.11-1.43) for spinocerebellar ataxia type 6. Three subgroups of disease progression and survival were identified for patients with spinocerebellar ataxia type 1: "severe" (n = 13; 12%), "intermediate" (n = 31; 29%), and "moderate" (n = 62; 58%). Patients in the severe group were more severely affected at baseline with higher Scale for the Assessment and Rating of Ataxia scores and frequency of nonataxia signs compared to those in the other groups. CONCLUSION: Rapid ataxia progression is associated with poor survival of the most common spinocerebellar ataxia. Theses current results have implications for the design of future interventional studies of spinocerebellar ataxia. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Ataxias Espinocerebelares/mortalidade , Ataxias Espinocerebelares/fisiopatologia , Adulto , Idoso , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Estudos de Coortes , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/fisiopatologia , Progressão da Doença , Distonia/etiologia , Distonia/fisiopatologia , Feminino , Humanos , Estudos Longitudinais , Doença de Machado-Joseph/complicações , Doença de Machado-Joseph/mortalidade , Doença de Machado-Joseph/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ataxias Espinocerebelares/complicações , Taxa de Sobrevida , Fatores de Tempo
16.
Am J Med Genet A ; 179(7): 1338-1345, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31102500

RESUMO

The main clinical features of cerebro-facio-thoracic dysplasia (CFTD) syndrome, which were described over four decades ago, include facial dysmorphism, multiple malformations of the vertebrae and ribs, and intellectual disability. Recently, a TMCO1 gene mutation was shown to be responsible for an autosomal recessive CFTD syndrome characterized by craniofacial dysmorphism, skeletal anomalies, and intellectual disability. In the current report, we describe two members of a consanguineous family from an Arab community in Israel who were clinically diagnosed as suffering from craniofacial dysmorphism, skeletal anomalies, intellectual disability, and epilepsy. Both affected siblings had behavioral difficulties such as anxiety and emotional instability with impulsive behaviors. Whole-exome sequencing revealed a homozygous stop-gain mutation NM_019026.4: c.616C > T; p.(Arg206*) in exon 6 of the TMCO1 gene. Bioinformatics analysis suggested a structural model for the TMCO1 protein and its homologues. The clinical features of our patients were compared with those of the only other five studies available in the literature. We conclude that this mutation in the TMCO1 gene is responsible for the various clinical manifestations of CFTD syndrome exhibited by the patients studied that expand the phenotypic spectrum of the disease to include epilepsy as a characteristic feature of this syndrome.


Assuntos
Alelos , Encéfalo/anormalidades , Canais de Cálcio/genética , Anormalidades Craniofaciais/genética , Mutação com Perda de Função , Mutação , Fenótipo , Tórax/patologia , Anormalidades Craniofaciais/patologia , Feminino , Humanos , Masculino , Linhagem
17.
J Inherit Metab Dis ; 42(2): 264-275, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30689204

RESUMO

Mitochondrial aconitase is the second enzyme in the tricarboxylic acid (TCA) cycle catalyzing the interconversion of citrate into isocitrate and encoded by the nuclear gene ACO2. A homozygous pathogenic variant in the ACO2 gene was initially described in 2012 resulting in a novel disorder termed "infantile cerebellar retinal degeneration" (ICRD, OMIM#614559). Subsequently, additional studies reported patients with pathogenic ACO2 variants, further expanding the genetic and clinical spectrum of this disorder to include milder and later onset manifestations. Here, we report an international multicenter cohort of 16 patients (of whom 7 are newly diagnosed) with biallelic pathogenic variants in ACO2 gene. Most patients present in early infancy with severe truncal hypotonia, truncal ataxia, variable seizures, evolving microcephaly, and ophthalmological abnormalities of which the most dominant are esotropia and optic atrophy with later development of retinal dystrophy. Most patients remain nonambulatory and do no acquire any language, but a subgroup of patients share a more favorable course. Brain magnetic resonance imaging (MRI) is typically normal within the first months but global atrophy gradually develops affecting predominantly the cerebellum. Ten of our patients were homozygous to the previously reported c.336C>G founder mutation while the other six patients were all compound heterozygotes displaying 10 novel mutations of whom 2 were nonsense predicting a deleterious effect on enzyme function. Structural protein modeling predicted significant impairment in aconitase substrate binding in the additional missense mutations. This study provides the most extensive cohort of patients and further delineates the clinical, radiological, biochemical, and molecular features of ACO2 deficiency.


Assuntos
Aconitato Hidratase/deficiência , Doenças Neurodegenerativas/diagnóstico , Atrofia Óptica/diagnóstico , Distrofias Retinianas/diagnóstico , Aconitato Hidratase/genética , Adolescente , Ataxia/genética , Cerebelo/patologia , Criança , Pré-Escolar , Ciclo do Ácido Cítrico , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Internacionalidade , Imageamento por Ressonância Magnética , Masculino , Microcefalia/genética , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/genética , Atrofia Óptica/genética , Distrofias Retinianas/genética , Síndrome , Adulto Jovem
20.
Brain ; 140(6): 1561-1578, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459997

RESUMO

Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.


Assuntos
Deficiência Intelectual/genética , Espasticidade Muscular/genética , Atrofia Óptica/genética , RNA Polimerase III/genética , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Idoso , Técnicas de Cultura de Células , Éxons/genética , Feminino , Estudos de Associação Genética , Humanos , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/diagnóstico por imagem , Espasticidade Muscular/fisiopatologia , Mutação , Atrofia Óptica/diagnóstico por imagem , Atrofia Óptica/fisiopatologia , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/fisiopatologia , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA