Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Development ; 145(20)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30266827

RESUMO

A specific subpopulation of neural progenitor cells, the basal radial glial cells (bRGCs) of the outer subventricular zone (OSVZ), are thought to have a key role in the evolutionary expansion of the mammalian neocortex. In the developing lissencephalic mouse neocortex, bRGCs exist at low abundance and show significant molecular differences from bRGCs in developing gyrencephalic species. Here, we demonstrate that the developing mouse medial neocortex (medNcx), in contrast to the canonically studied lateral neocortex (latNcx), exhibits an OSVZ and an abundance of bRGCs similar to that in developing gyrencephalic neocortex. Unlike bRGCs in developing mouse latNcx, the bRGCs in medNcx exhibit human bRGC-like gene expression, including expression of Hopx, a human bRGC marker. Disruption of Hopx expression in mouse embryonic medNcx and forced Hopx expression in mouse embryonic latNcx demonstrate that Hopx is required and sufficient, respectively, for bRGC abundance as found in the developing gyrencephalic neocortex. Taken together, our data identify a novel bRGC subpopulation in developing mouse medNcx that is highly related to bRGCs of developing gyrencephalic neocortex.


Assuntos
Células Ependimogliais/metabolismo , Proteínas de Homeodomínio/metabolismo , Neocórtex/citologia , Neocórtex/embriologia , Animais , Sistemas CRISPR-Cas/genética , Proliferação de Células , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Ventrículos Laterais/embriologia , Camundongos Endogâmicos C57BL , Neocórtex/metabolismo , Fator de Transcrição PAX6/metabolismo , Células-Tronco/citologia
2.
J Immunol ; 194(6): 2531-8, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25681349

RESUMO

Autoreactive CD4(+) T cells are an essential feature of type 1 diabetes mellitus. We applied single-cell TCR α- and ß-chain sequencing to peripheral blood GAD65-specific CD4(+) T cells, and TCR α-chain next-generation sequencing to bulk memory CD4(+) T cells to provide insight into TCR diversity in autoimmune diabetes mellitus. TCRs obtained for 1650 GAD65-specific CD4(+) T cells isolated from GAD65 proliferation assays and/or GAD65 557I tetramer staining in 6 patients and 10 islet autoantibody-positive children showed large diversity with 1003 different TCRs identified. TRAV and TRBV gene usage was broad, and the TRBV5.1 gene was most prominent within the GAD65 557I tetramer(+) cells. Limited overlap (<5%) was observed between TCRs of GAD65-proliferating and GAD65 557I tetramer(+) CD4(+) T cells. Few TCRs were repeatedly found in GAD65-specific cells at different time points from individual patients, and none was seen in more than one subject. However, single chains were often shared between patients and used in combination with different second chains. Next-generation sequencing revealed a wide frequency range (<0.00001-1.62%) of TCR α-chains corresponding to GAD65-specific T cells. The findings support minor selection of genes and TCRs for GAD65-specific T cells, but fail to provide strong support for TCR-targeted therapies.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Variação Genética/imunologia , Glutamato Descarboxilase/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Adolescente , Adulto , Autoanticorpos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Pré-Escolar , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Masculino , Estado Pré-Diabético/genética , Estado Pré-Diabético/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Análise de Célula Única/métodos , Adulto Jovem
3.
J Immunol ; 189(12): 5649-58, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23129754

RESUMO

CD4(+)CD25(+)FOXP3(+) regulatory T cells (Tregs) control the activation and expansion of alloreactive and autoreactive T cell clones. Because uncontrolled activation and expansion of autoreactive T cells occur in an IL-7-rich environment, we explored the possibility that IL-7 may affect the function of Treg. We show that the functional high-affinity IL-7R is expressed on both naive and memory Tregs, and exposure to IL-7 results in STAT-5 phosphorylation. Naive, but not memory, Tregs proliferated greatly and acquired a memory phenotype in the setting of a suppression assay when IL-7 was present. Importantly, the presence of IL-7 abrogated the capacity of Tregs to suppress proliferation of conventional T cells in response to TCR activators, including alloantigens and autoantigens. Removal of IL-7 restored the suppressive function of Tregs. Preblocking of the IL-7R on the Tregs also restored suppressor function, indicating that IL-7 directly affected Treg function. Thus, prolonged periods of homeostatic expansion can temporarily release natural regulatory brakes on T cells, thereby providing an additional mechanism for activating and expanding alloreactive and autoreactive T cells.


Assuntos
Autoantígenos/biossíntese , Antígenos CD4/biossíntese , Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/biossíntese , Interleucina-7/fisiologia , Isoantígenos/biossíntese , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Proliferação de Células , Células Cultivadas , Contraindicações , Humanos , Imunofenotipagem , Interleucina-10/biossíntese , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/metabolismo
4.
PLoS Biol ; 8(6): e1000408, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20613862

RESUMO

DNA repair is essential to maintain genome integrity, and genes with roles in DNA repair are frequently mutated in a variety of human diseases. Repair via homologous recombination typically restores the original DNA sequence without introducing mutations, and a number of genes that are required for homologous recombination DNA double-strand break repair (HR-DSBR) have been identified. However, a systematic analysis of this important DNA repair pathway in mammalian cells has not been reported. Here, we describe a genome-scale endoribonuclease-prepared short interfering RNA (esiRNA) screen for genes involved in DNA double strand break repair. We report 61 genes that influenced the frequency of HR-DSBR and characterize in detail one of the genes that decreased the frequency of HR-DSBR. We show that the gene KIAA0415 encodes a putative helicase that interacts with SPG11 and SPG15, two proteins mutated in hereditary spastic paraplegia (HSP). We identify mutations in HSP patients, discovering KIAA0415/SPG48 as a novel HSP-associated gene, and show that a KIAA0415/SPG48 mutant cell line is more sensitive to DNA damaging drugs. We present the first genome-scale survey of HR-DSBR in mammalian cells providing a dataset that should accelerate the discovery of novel genes with roles in DNA repair and associated medical conditions. The discovery that proteins forming a novel protein complex are required for efficient HR-DSBR and are mutated in patients suffering from HSP suggests a link between HSP and DNA repair.


Assuntos
Reparo do DNA , Genoma Humano , Interferência de RNA , Paraplegia Espástica Hereditária/genética , Técnicas de Silenciamento de Genes , Humanos , Recombinação Genética
5.
Sci Rep ; 12(1): 10533, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732804

RESUMO

Enzyme specificity in lipid metabolic pathways often remains unresolved at the lipid species level, which is needed to link lipidomic molecular phenotypes with their protein counterparts to construct functional pathway maps. We created lipidomic profiles of 23 gene knockouts in a proof-of-concept study based on a CRISPR/Cas9 knockout screen in mammalian cells. This results in a lipidomic resource across 24 lipid classes. We highlight lipid species phenotypes of multiple knockout cell lines compared to a control, created by targeting the human safe-harbor locus AAVS1 using up to 1228 lipid species and subspecies, charting lipid metabolism at the molecular level. Lipid species changes are found in all knockout cell lines, however, some are most apparent on the lipid class level (e.g., SGMS1 and CEPT1), while others are most apparent on the fatty acid level (e.g., DECR2 and ACOT7). We find lipidomic phenotypes to be reproducible across different clones of the same knockout and we observed similar phenotypes when two enzymes that catalyze subsequent steps of the long-chain fatty acid elongation cycle were targeted.


Assuntos
Metabolismo dos Lipídeos , Lipidômica , Animais , Ácidos Graxos/genética , Técnicas de Inativação de Genes , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Mamíferos
6.
J Endocr Soc ; 6(6): bvac062, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35592511

RESUMO

Steroid 21-hydroxylase is an enzyme of the steroid pathway that is involved in the biosynthesis of cortisol and aldosterone by hydroxylation of 17α-hydroxyprogesterone and progesterone at the C21 position. Mutations in CYP21A2, the gene encoding 21-hydroxylase, cause the most frequent form of the autosomal recessive disorder congenital adrenal hyperplasia (CAH). In this study, we generated a humanized 21-hydroxylase mouse model as the first step to the generation of mutant mice with different CAH-causing mutations. We replaced the mouse Cyp21a1 gene with the human CYP21A2 gene using homologous recombination in combination with CRISPR/Cas9 technique. The aim of this study was to characterize the new humanized mouse model. All results described are related to the homozygous animals in comparison with wild-type mice. We show analogous expression patterns of human 21-hydroxylase by the murine promoter and regulatory elements in comparison to murine 21-hydroxylase in wild-type animals. As expected, no Cyp21a1 transcript was detected in homozygous CYP21A2 adrenal glands. Alterations in adrenal gene expression were observed for Cyp11a1, Star, and Cyb11b1. These differences, however, were not pathological. Outward appearance, viability, growth, and fertility were not affected in the humanized CYP21A2 mice. Plasma steroid levels of corticosterone and aldosterone showed no pathological reduction. In addition, adrenal gland morphology and zonation were similar in both the humanized and the wild-type mice. In conclusion, humanized homozygous CYP21A2 mice developed normally and showed no differences in histological analyses, no reduction in adrenal and gonadal gene expression, or in plasma steroids in comparison with wild-type littermates.

7.
Nature ; 432(7020): 1036-40, 2004 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-15616564

RESUMO

RNA interference (RNAi) is an evolutionarily conserved defence mechanism whereby genes are specifically silenced through degradation of messenger RNAs; this process is mediated by homologous double-stranded (ds)RNA molecules. In invertebrates, long dsRNAs have been used for genome-wide screens and have provided insights into gene functions. Because long dsRNA triggers a nonspecific interferon response in many vertebrates, short interfering (si)RNA or short hairpin (sh)RNAs must be used for these organisms to ensure specific gene silencing. Here we report the generation of a genome-scale library of endoribonuclease-prepared short interfering (esi)RNAs from a sequence-verified complementary DNA collection representing 15,497 human genes. We used 5,305 esiRNAs from this library to screen for genes required for cell division in HeLa cells. Using a primary high-throughput cell viability screen followed by a secondary high content videomicroscopy assay, we identified 37 genes required for cell division. These include several splicing factors for which knockdown generates mitotic spindle defects. In addition, a putative nuclear-export terminator was found to speed up cell proliferation and mitotic progression after knockdown. Thus, our study uncovers new aspects of cell division and establishes esiRNA as a versatile approach for genomic RNAi screens in mammalian cells.


Assuntos
Divisão Celular/genética , Endorribonucleases/metabolismo , Biblioteca Gênica , Genes Essenciais/genética , Genômica/métodos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proliferação de Células , Sobrevivência Celular , Citocinese/genética , Células HeLa , Humanos , Microscopia de Vídeo , Mitose/genética , Dados de Sequência Molecular , Fenótipo , RNA Interferente Pequeno/genética , Fuso Acromático/fisiologia
8.
Curr Diab Rep ; 9(2): 113-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19323955

RESUMO

Autoreactive T cells play a major role in the pathogenesis of type 1 diabetes mellitus (T1DM) and are considered a major target of immunomodulatory strategies aimed at preventing or delaying the disease onset. However, the T-cell response against insulin-producing beta cells is still poorly understood. T cells potentially able to recognize and destroy beta cells are present in most individuals, but only in a few do they differentiate into pathogenic effectors. Recent and novel findings in T-cell biology on the dynamics of T-cell activation and memory maintenance are shedding new light on the general mechanisms of the T-cell response. In this article, we discuss how new discoveries about T-cell differentiation, expansion, and homeostasis could help to clarify mechanisms of autoimmunity that lead to T1DM.


Assuntos
Autoantígenos/imunologia , Diferenciação Celular/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Homeostase/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Proliferação de Células , Humanos
9.
Sci Transl Med ; 9(378)2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28228602

RESUMO

Autoimmune diabetes is marked by sensitization to ß cell self-antigens in childhood. We longitudinally followed at-risk children from infancy and performed single-cell gene expression in ß cell antigen-responsive CD4+ T cells through pre- and established autoimmune phases. A striking divergence in the gene signature of ß cell antigen-responsive naïve CD4+ T cells from children who developed ß cell autoimmunity was found in infancy, well before the appearance of ß cell antigen-specific memory T cells or autoantibodies. The signature resembled a pre-T helper 1 (TH1)/TH17/T follicular helper cell response with expression of CCR6, IL21, TBX21, TNF, RORC, EGR2, TGFB1, and ICOS, in the absence of FOXP3, IL17, and other cytokines. The cells transitioned to an IFNG-TH1 memory phenotype with the emergence of autoantibodies. We suggest that the divergent naïve T cell response is a consequence of genetic or environmental priming during unfavorable perinatal exposures and that the signature will guide future efforts to detect and prevent ß cell autoimmunity.


Assuntos
Autoantígenos/imunologia , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Células Secretoras de Insulina/imunologia , Autoanticorpos/biossíntese , Autoimunidade/efeitos dos fármacos , Autoimunidade/genética , Linfócitos T CD4-Positivos/efeitos dos fármacos , Perfilação da Expressão Gênica , Glutamato Descarboxilase/metabolismo , Humanos , Tolerância Imunológica/efeitos dos fármacos , Lactente , Células Secretoras de Insulina/efeitos dos fármacos , Toxina Tetânica/farmacologia , Células Th1/imunologia , Transcrição Gênica/efeitos dos fármacos
10.
Immun Inflamm Dis ; 5(4): 480-492, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28681454

RESUMO

INTRODUCTION: Hyporesponsiveness of human lamina propria immune cells to microbial and nutritional antigens represents one important feature of intestinal homeostasis. It is at least partially mediated by low expression of the innate response receptors CD11b, CD14, CD16 as well as the cystine-glutamate transporter xCT on these cells. Milieu-specific mechanisms leading to the down-regulation of these receptors on circulating monocytes, the precursor cells of resident macrophages, are mostly unknown. METHODS: Here, we addressed the question whether the short chain fatty acid n-butyrate, a fermentation product of the mammalian gut microbiota exhibiting histone deacetylase inhibitory activity, is able to modulate expression of these receptors in human circulating monocytes. RESULTS: Exposure to n-butyrate resulted in the downregulation of CD11b, CD14, as well as CD16 surface expression on circulating monocytes. XCT transcript levels in circulating monocytes were also reduced following exposure to n-butyrate. Importantly, treatment resulted in the downregulation of protein and gene expression of the transcription factor PU.1, which was shown to be at least partially required for the expression of CD16 in circulating monocytes. PU.1 expression in resident macrophages in situ was observed to be substantially lower in healthy when compared to inflamed colonic mucosa. CONCLUSIONS: In summary, the intestinal microbiota may support symbiosis with the human host organism by n-butyrate mediated downregulation of protein and gene expression of innate response receptors as well as xCT on circulating monocytes following recruitment to the lamina propria. Downregulation of CD16 gene expression may at least partially be caused at the transcriptional level by the n-butyrate mediated decrease in expression of the transcription factor PU.1 in circulating monocytes.


Assuntos
Butiratos/imunologia , Imunidade Inata , Monócitos/imunologia , Monócitos/metabolismo , Receptores Imunológicos/metabolismo , Adulto , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antígenos de Bactérias/imunologia , Biomarcadores , Regulação para Baixo , Exposição Ambiental , Feminino , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/metabolismo , Receptores Imunológicos/genética , Transativadores/metabolismo
11.
Diabetes ; 53(8): 1987-94, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15277377

RESUMO

Negative selection of self-reactive T-cells during thymic development, along with activation-induced cell death in peripheral lymphocytes, is designed to limit the expansion and persistence of autoreactive T-cells. Autoreactive T-cells are nevertheless present, both in patients with type 1 diabetes and in at-risk subjects. By using MHC class II tetramers to probe the T-cell receptor (TcR) specificity and avidity of GAD65 reactive T-cell clones isolated from patients with type 1 diabetes, we identified high-avidity CD4+ T-cells in peripheral blood, coexisting with low-avidity cells directed to the same GAD65 epitope specificity. A variety of cytokine patterns was observed, even among T-cells with high MHC-peptide avidity, and the clones utilize a biased set of TcR genes that favor two combinations, Valpha12-beta5.1 and Valpha17-Vbeta4. Presence of these high-avidity TcRs indicates a failure to delete autoreactive T-cells that likely arise from oligoclonal expansion in response to autoantigen exposure during the progression of type 1 diabetes.


Assuntos
Autoanticorpos/sangue , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Glutamato Descarboxilase/sangue , Isoenzimas/sangue , Afinidade de Anticorpos/imunologia , Doadores de Sangue , Antígenos HLA-DR/sangue , Humanos , Ativação Linfocitária , Complexo Principal de Histocompatibilidade , Receptores de Antígenos de Linfócitos T/sangue , Valores de Referência
12.
Immun Inflamm Dis ; 2(3): 166-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25505551

RESUMO

Deregulated activation of mucosal lamina propria T cells plays a central role in the pathogenesis of intestinal inflammation. One of the means to attenuate T cell activation is by blocking the CD28/CD80 co-stimulatory pathway. Here we investigate RhuDex®, a small molecule that binds to human CD80, for its effects on the activation of lamina propria T cells employing a gut-culture model of inflammation. To this end, lamina propria leukocytes (LPL) and peripheral blood lymphocytes (PBL) were stimulated either through the CD3/T-cell-receptor complex or the CD2-receptor (CD2) employing agonistic monoclonal antibodies. Co-stimulatory signals were provided by CD80/CD86 present on lamina propria myeloid cells or LPS-activated peripheral blood monocytes. Results show that RhuDex® caused a profound reduction of LPL and PBL proliferation, while Abatacept (CTLA-4-Ig) inhibited LPL proliferation to a small degree, and had no effect on PBL proliferation. Furthermore, Abatacept significantly inhibited IL-2, TNF-α, and IFN-γ release from LPL, primarily produced by CD4(+) T cells, where IL-2 blockage was surprisingly strong, suggesting a down-regulating effect on regulatory T cells. In contrast, in the presence of RhuDex®, secretion of IL-17, again mostly by CD4(+) T cells, and IFN-γ was inhibited in LPL and PBL, yet IL-2 remained unaffected. Thus, RhuDex® efficiently inhibited lamina propria and peripheral blood T-cell activation in this pre-clinical study making it a promising drug candidate for the treatment of intestinal inflammation.

13.
Diabetes ; 62(6): 2059-66, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23349478

RESUMO

Islet autoimmunity precedes type 1 diabetes onset. We previously found that islet autoimmunity rarely starts before 6 months of age but reaches its highest incidence already at ∼1 year of age. We now examine whether homeostatic expansion and immune competence changes seen in a maturating immune system may account for this marked variation in islet autoimmunity risk in the first year of life. We found naïve proinsulin- and GAD65-responsive T cells in cord blood (CB) of healthy newborns, with highest responses observed in children with type 1 diabetes-susceptible HLA-DRB1/DQB1 genotypes. Homeostatic expansion characteristics with increased IL-7 concentrations and enhanced T-cell responsiveness to IL-7 were observed throughout the first year of life. However, the ability of antigen-presenting cells to activate naïve T cells was compromised at birth, and CB monocytes had low surface expression of CD40 and HLA class II. In contrast, antigen presentation and expression of these molecules had reached competent adult levels by the high incidence age of 8 months. We propose that temporal changes in islet autoimmunity seroconversion in infants are a consequence of the changing balance between homeostatic drive and antigen presentation competence. These findings are relevant for early prevention of type 1 diabetes.


Assuntos
Apresentação de Antígeno/fisiologia , Linfócitos T/metabolismo , Apresentação de Antígeno/genética , Antígenos CD4/metabolismo , Antígenos CD40/genética , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Genótipo , Antígenos HLA/genética , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Haplótipos/genética , Homeostase/genética , Homeostase/fisiologia , Humanos , Lactente , Recém-Nascido , Subunidade alfa de Receptor de Interleucina-2/metabolismo
14.
J Immunol Methods ; 400-401: 13-22, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24239865

RESUMO

T cells have diversity in TCR, epitope recognition, and cytokine production, and can be used for immune monitoring. Furthermore, clonal expansion of TCR families in disease may provide opportunities for TCR-directed therapies. We developed methodology for sequencing expressed genes of TCR alpha and beta chains from single cells and applied this to vaccine (tetanus-toxoid)-responsive CD4(+) T cells. TCR alpha and beta chains were both successfully sequenced in 1309 (43%) of 3038 CD4(+) T cells yielding 677 different receptors. TRAV and TRBV gene usage differed between tetanus-toxoid-responsive and non-responsive cells (p=0.004 and 0.0002), and there was extensive TCR diversity in tetanus-toxoid-responsive cells within individuals. Identical TCRs could be recovered in different samples from the same subject: TCRs identified after booster vaccination were frequent in pre-booster memory T cells (31% of pre-booster TCR), and also identified in pre-booster vaccination naïve cells (6.5%). No TCR was shared between subjects, but tetanus toxoid-responsive cells sharing one of their TCR chains were observed within and between subjects. Coupling single-cell gene expression profiling to TCR sequencing revealed examples of distinct cytokine profiles in cells bearing identical TCR. Novel molecular methodology demonstrates extensive diversity of Ag-responsive CD4(+) T cells within and between individuals.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Perfilação da Expressão Gênica/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Subpopulações de Linfócitos T/imunologia , Toxoide Tetânico/imunologia , Adulto , DNA/genética , Feminino , Humanos , Memória Imunológica , Lactente , Masculino , Pessoa de Meia-Idade
15.
Cell Stem Cell ; 4(5): 403-15, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19345177

RESUMO

Pluripotent embryonic stem cells (ESCs) maintain self-renewal while ensuring a rapid response to differentiation cues. The identification of genes maintaining ESC identity is important to develop these cells for their potential therapeutic use. Here we report a genome-scale RNAi screen for a global survey of genes affecting ESC identity via alteration of Oct4 expression. Factors with the strongest effect on Oct4 expression included components of the Paf1 complex, a protein complex associated with RNA polymerase II. Using a combination of proteomics, expression profiling, and chromatin immunoprecipitation, we demonstrate that the Paf1C binds to promoters of key pluripotency genes, where it is required to maintain a transcriptionally active chromatin structure. The Paf1C is developmentally regulated and blocks ESC differentiation upon overexpression, and the knockdown in ESCs causes expression changes similar to Oct4 or Nanog depletions. We propose that the Paf1C plays an important role in maintaining ESC identity.


Assuntos
Células-Tronco Embrionárias/citologia , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Interferência de RNA , Fatores de Transcrição/metabolismo , Animais , Linhagem da Célula , Proliferação de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Genoma , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Proteínas Nucleares/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
16.
CSH Protoc ; 2007: pdb.prot4824, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357149

RESUMO

INTRODUCTIONThe mechanism of RNA interference has emerged as a practical tool to study loss of function in many organisms. To make the method of gene knockdown suitable for mammalian cells, short interfering double-stranded RNAs (siRNAs) need to be applied. This protocol describes a straightforward, low-cost method, which uses recombinant Escherichia coli RNase III to digest long dsRNA into endoribonuclease-prepared short interfering RNAs (esiRNAs). Advantages of this technology are the high efficiency and specificity of the resulting esiRNA and its usefulness for not only small-scale applications, but also high-throughput loss-of-function analyses. Another great asset of esiRNA is its flexibility in design, using Web-based tools such as DEQOR, or predesigned esiRNA sequences from the database RiDDLE. PCR products flanked with T7 promoter sequences are generated, transcribed, and annealed. The resulting long dsRNA is enzymatically digested into a pool of overlapping esiRNAs, which are subsequently spin-column-purified.

17.
Nat Methods ; 4(4): 337-44, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17351622

RESUMO

RNA interference (RNAi) has become an important technique for loss-of-gene-function studies in mammalian cells. To achieve reliable results in an RNAi experiment, efficient and specific silencing triggers are required. Here we present genome-wide data sets for the production of endoribonuclease-prepared short interfering RNAs (esiRNAs) for human, mouse and rat. We used an algorithm to predict the optimal region for esiRNA synthesis for every protein-coding gene of these three species. We created a database, RiDDLE, for retrieval of target sequences and primer information. To test this in silico resource experimentally, we generated 16,242 esiRNAs that can be used for RNAi screening in human cells. Comparative analyses with chemically synthesized siRNAs demonstrated a high silencing efficacy of esiRNAs and a 12-fold reduction of downregulated off-target transcripts as detected by microarray analysis. Hence, the presented esiRNA libraries offer an efficient, cost-effective and specific alternative to presently available mammalian RNAi resources.


Assuntos
Endorribonucleases/genética , Biblioteca Genômica , Genômica/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Transcrição Gênica , Transfecção , Regiões não Traduzidas , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA