Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 2): 355-362, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363222

RESUMO

In this work, Ce-doped yttria-stabilized zirconia (YSZ) and pure YSZ phases were subjected to irradiation with 14 MeV Au ions. Irradiation studies were performed to simulate long-term structural and microstructural damage due to self-irradiation in YSZ phases hosting alpha-active radioactive species. It was found that both the Ce-doped YSZ and the YSZ phases had a reasonable tolerance to irradiation at high ion fluences and the bulk crystallinity was well preserved. Nevertheless, local microstrain increased in all compounds under study after irradiation, with the Ce-doped phases being less affected than pure YSZ. Doping with cerium ions increased the microstructural stability of YSZ phases through a possible reduction in the mobility of oxygen atoms, which limits the formation of structural defects. Doping of YSZ with tetravalent actinide elements is expected to have a similar effect. Thus, YSZ phases are promising for the safe long-term storage of radioactive elements. Using synchrotron radiation diffraction, measurements of the thin irradiated layers of the Ce-YSZ and YSZ samples were performed in grazing incidence (GI) mode. A corresponding module for measurements in GI mode was developed at the Rossendorf Beamline and relevant technical details for sample alignment and data collection are also presented.

2.
Inorg Chem ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819111

RESUMO

Although numerous polyphosphido complexes have been accessed through the transition-metal-mediated activation and functionalization of white phosphorus (P4), the selective functionalization of the resulting polyphosphorus ligands in these compounds remains underdeveloped. In this study, we explore the reactions between cyclotetraphosphido cobalt complexes and heterocumulenes, leading to functionalized P4 ligands. Specifically, the reaction of carbon disulfide (CS2) with [K(18c-6)][(Ar*BIAN)Co(η4-P4)] ([K(18c-6)]1, 18c-6 = [18]crown-6) affords the adduct [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4CS2)] ([K(18c-6)]3), in which CS2 is attached to a single phosphorus atom (Ar* = 2,6-dibenzhydryl-4-isopropylphenyl, BIAN = 1,2-bis(arylimino)acenaphthene diimine). In contrast, the insertion of bis(trimethylsilyl)sulfur diimide S(NSiMe3)2 into a P-P bond of [K(18c-6)]1 yields [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)2)] (K(18c-6)]4). This salt further reacts with Me3SiCl to form [(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)3] (5), featuring a rare azatetraphosphole ligand. Moreover, treatment of the previously reported complex [(Ar*BIAN)Co(η3:η1-P4C(O)tBu)] (2) with isothiocyanates results in P-C bond insertion, yielding [(Ar*BIAN)Co(η3:η1-P4C(S)N(R)C(O)tBu)] (6a,b; R = Cy, Ph).

3.
Orthod Craniofac Res ; 27(1): 95-101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37470303

RESUMO

INTRODUCTION: In orthodontics, white spot lesions are a persistent and widespread problem caused by the demineralization of buccal tooth surfaces around bonded brackets. The remaining adhesive around the brackets leads to surface roughness, which might contribute to demineralization. The present in vitro study aimed to compare a conventional and a modern adhesive system (APC Flash-Free technology) for orthodontic brackets with regard to the adhesion of Streptococcus sobrinus, a leading caries pathogen. METHODS: This in vitro study included 20 premolar teeth and compared 10 APC Flash-Free adhesive-coated ceramic brackets (FF)with 10 conventionally bonded (CB) ceramic clarity brackets. Specimens were incubated in an S. sobrinus suspension for 3 h. To evaluate the bacterial formation, samples were analysed with a scanning electron microscope (SEM). Imaging software was used to quantify and statistically compare percentage values of colonization (PVC) in both groups' adhesion and transition areas. RESULTS: We found a significant difference in biofilm formation between the groups for the adhesive and transition areas. PVC in the adhesive area was approximately 10.3-fold greater for the CB group compared with the FF group (median: 3.2 vs 0.31; P < 0.0001). For the transition area, median PVC was approximately 2.4-fold greater for the CB group compared with the FF group (median: 53.17 vs 22.11; P < 0.01). CONCLUSIONS: There was a significantly lower level of S. sobrinus formation around the FF bracket system than there was surrounding the conventionally bonded group. This study suggests that the FF adhesive bracket system can help reduce the occurrence of bacterial growth around orthodontic brackets.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Desmineralização do Dente , Humanos , Dente Pré-Molar , Cerâmica , Biofilmes , Colagem Dentária/métodos , Teste de Materiais
4.
Clin Oral Investig ; 27(5): 1993-2001, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36809356

RESUMO

OBJECTIVES: White spot lesions are one of the most common side effects of orthodontic therapy with a multibracket appliance and may indicate a preliminary stage of caries, also known as initial caries. Several approaches may be utilized to prevent these lesions, such as reducing bacterial adhesion in the area surrounding the bracket. This bacterial colonization can be adversely affected by a number of local characteristics. In this context, the effects of excess dental adhesive in the bracket periphery were investigated by comparing a conventional bracket system with the APC flash-free bracket system. MATERIALS AND METHODS: Both bracket systems were applied to 24 extracted human premolars, and bacterial adhesion with Streptoccocus sobrinus (S. sobrinus) was performed for 24 h, 48 h, 7 d, and 14 d. After incubation, bacterial colonization was examined in specific areas by electron microscopy. RESULTS: Overall, significantly fewer bacterial colonies were found in the adhesive area around the APC flash-free brackets (n = 507 ± 13 bacteria) than the conventionally bonded bracket systems (n = 850 ± 56 bacteria). This is a significant difference (**p = 0.004). However, APC flash-free brackets tend to create marginal gaps with more bacterial adhesion in this area than conventional bracket systems (n = 265 ± 31 bacteria). This bacterial accumulation in the marginal-gap area is also significant (*p = 0.029). CONCLUSION: A smooth adhesive surface with minimal adhesive excess is beneficial for reducing bacterial adhesion but also poses a risk of marginal gap formation with subsequent bacterial colonization, which can potentially trigger carious lesions. CLINICAL RELEVANCE: To reduce bacterial adhesion, the APC flash-free bracket adhesive system with low adhesive excess might be beneficial. APC flash-free brackets reduce the bacterial colonization in the bracket environment. A lower number of bacteria can minimize white spot lesions in the bracket environment. APC flash-free brackets tend to form marginal gaps between the bracket adhesive and the tooth.


Assuntos
Colagem Dentária , Cárie Dentária , Braquetes Ortodônticos , Humanos , Cimentos Dentários , Aderência Bacteriana , Teste de Materiais
5.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373159

RESUMO

Periodontal ligament fibroblasts (PdLFs) exert important functions in oral tissue and bone remodeling following mechanical forces, which are specifically applied during orthodontic tooth movement (OTM). Located between the teeth and the alveolar bone, mechanical stress activates the mechanomodulatory functions of PdLFs including regulating local inflammation and activating further bone-remodeling cells. Previous studies suggested growth differentiation factor 15 (GDF15) as an important pro-inflammatory regulator during the PdLF mechanoresponse. GDF15 exerts its effects through both intracrine signaling and receptor binding, possibly even in an autocrine manner. The extent to which PdLFs are susceptible to extracellular GDF15 has not yet been investigated. Thus, our study aims to examine the influence of GDF15 exposure on the cellular properties of PdLFs and their mechanoresponse, which seems particularly relevant regarding disease- and aging-associated elevated GDF15 serum levels. Therefore, in addition to investigating potential GDF15 receptors, we analyzed its impact on the proliferation, survival, senescence, and differentiation of human PdLFs, demonstrating a pro-osteogenic effect upon long-term stimulation. Furthermore, we observed altered force-related inflammation and impaired osteoclast differentiation. Overall, our data suggest a major impact of extracellular GDF15 on PdLF differentiation and their mechanoresponse.


Assuntos
Fator 15 de Diferenciação de Crescimento , Ligamento Periodontal , Humanos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Células Cultivadas , Diferenciação Celular , Fibroblastos/metabolismo , Inflamação/metabolismo , Técnicas de Movimentação Dentária
6.
Inorg Chem ; 61(4): 1843-1850, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35044161

RESUMO

When in contact with oxidizing media, UO2 pellets used as nuclear fuel may transform into U4O9, U3O7, and U3O8. The latter starts forming by stress-induced phase transformation only upon cracking of the pristine U3O7 and is associated with a 36% volumetric expansion with respect to the initial UO2. This may pose a safety issue for spent nuclear fuel (SNF) management as it could imply a confinement failure and hence dispersion of radionuclides within the environment. In this work, UO2 with different grain sizes (representative of the grain size in different radial positions in the SNF) was oxidized in air at 300 °C, and the oxidation mechanisms were investigated using in situ synchrotron X-ray diffraction. The formation of U3O8 was detected only in UO2 pellets with larger grains (3.08 ± 0.06 µm and 478 ± 17 nm), while U3O8 did not develop in sintered UO2 with a grain size of 163 ± 9 nm. This result shows that, in dense materials, a sufficiently fine microstructure inhibits both the cracking of U3O7 and the subsequent formation of U3O8. Hence, the nanostructure prevents the material from undergoing significant volumetric expansion. Considering that the peripheral region of SNF is constituted by the high burnup structure, characterized by 100-300 nm-sized grains and micrometric porosity, these findings are relevant for a better understanding of the spent nuclear fuel behavior and hence for the safety of the nuclear waste storage.

7.
Clin Oral Investig ; 26(1): 1-11, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34981251

RESUMO

OBJECTIVES: Decalcification during orthodontic treatment is significantly increased. To prevent this negative impact, new treatments with sealants before bonding brackets are commonly been used. This systematic review discusses current knowledge on shear bond strength when using sealant before bonding. MATERIALS AND METHODS: A systematic review and meta-analysis were performed to identify studies that address shear bond strength after using a sealant before bonding brackets. The search was carried out using common electronic databases in addition to individual searches. Both screening and study eligibility analysis were performed according to PRISMA and Cochrane Guidelines for systematic reviews. Several terms describing shear bond strength after using a sealant before bonding brackets were searched. Particular attention was paid to bond failure and bracket loss. For the statistical outcome, all results were shown in a forest plot based on standardized mean differences (SMD) with a random-effects model to respect heterogeneity of these studies. To assess the heterogeneity of the different trials, I2-value and the Q-Test were performed. RESULTS: The initial search identified 416 studies. After a thorough selection process, a total of 15 articles met the inclusion criteria. All 15 articles reported results of in vitro studies. Papers were divided into four subgroups according to their used product: ProSeal, Transbond bonding, the combination of Transbond bonding and ProSeal and Clearfil Protect Bond. The results of this review demonstrate a high heterogeneity of the studies. The SMD of the examined 15 articles show nearly no difference between the control and the intervention groups in shear bond strength (p < 0.0001; OR - 0.12; Cl - 0.47-0.23). Forest plots for comparison of the subgroups depict no difference in shear bond strength as well. CONCLUSIONS: This meta-analysis concludes that there is no additive benefit for shear bond strength when using sealant before bonding. However, additional randomized controlled studies should be performed to analyze impact of sealants on bonding strength and bracket loss in more detail. CLINICAL RELEVANCE: Using sealants before orthodontic bonding does not reduce shear bond strength.


Assuntos
Colagem Dentária , Braquetes Ortodônticos , Análise do Estresse Dentário , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento
8.
J Synchrotron Radiat ; 28(Pt 1): 333-349, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399586

RESUMO

ROBL-II provides four different experimental stations to investigate actinide and other alpha- and beta-emitting radionuclides at the new EBS storage ring of ESRF within an energy range of 3 to 35 keV. The XAFS station consists of a highly automatized, high sample throughput installation in a glovebox, to measure EXAFS and conventional XANES of samples routinely at temperatures down to 10 K, and with a detection limit in the sub-p.p.m. range. The XES station with its five bent-crystal analyzer, Johann-type setup with Rowland circles of 1.0 and 0.5 m radii provides high-energy resolution fluorescence detection (HERFD) for XANES, XES, and RIXS measurements, covering both actinide L and M edges together with other elements accessible in the 3 to 20 keV energy range. The six-circle heavy duty goniometer of XRD-1 is equipped for both high-resolution powder diffraction as well as surface-sensitive CTR and RAXR techniques. Single crystal diffraction, powder diffraction with high temporal resolution, as well as X-ray tomography experiments can be performed at a Pilatus 2M detector stage (XRD-2). Elaborate radioprotection features enable a safe and easy exchange of samples between the four different stations to allow the combination of several methods for an unprecedented level of information on radioactive samples for both fundamental and applied actinide and environmental research.

9.
Clin Oral Investig ; 25(6): 3453-3461, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33169272

RESUMO

OBJECTIVES: The number of patients in dentistry taking bisphosphonates (BP) increases every year. There are only little data about the influence of biomechanical stress due to orthodontic treatment and periodontal inflammation in BP patients. This study focused on the effects of the induced inflammation by IL-1ß in compressed human periodontal ligament fibroblasts (HPdLF) exposed to the nitrogen-containing BP zoledronate in vitro. MATERIALS AND METHODS: HPdLF were incubated with 5 µmol/l zoledronate and 10 ng/ml IL-1ß for 48 h. In the last 3 h, cells were exposed to a compressive, centrifugal force of 34.9 g/cm2. Cell viability was analyzed directly after the compressive force by MTT assay. Gene expression of COX-2 and IL-6 was investigated using quantitative qRT-PCR. PGE-2 and IL-6 protein secretion were measured via ELISA. RESULTS: The cell viability of HPdLF was not affected. Without inflammatory pre-stimulation, COX-2 expression was increased by compression and zoledronate. IL-6 expression was increased under compression. On secretion level, the combination of compression and zoledronate induced a slightly increase of IL-6 secretion. In contrast, inflammatory pre-stimulation strengthened the compressive upregulation of COX-2, as well as induced a higher PGE-2 secretion. Further addition of zoledronate to pre-stimulated cells additionally strengthened the compression-induced upregulation of COX-2 and IL-6 expression as well as protein secretion compared to all other groups. CONCLUSIONS: Biomechanical stress might trigger a pro-inflammatory potential of BP further enhanced in the presence of an inflammatory pre-stimulation. CLINICAL RELEVANCE: To prevent excessive host inflammatory responses, occlusal overloading and mechanical stress due to orthodontic treatment should be avoided in BP patients with untreated periodontitis.


Assuntos
Fibroblastos , Ligamento Periodontal , Células Cultivadas , Difosfonatos/farmacologia , Humanos , Ácido Zoledrônico/farmacologia
10.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948405

RESUMO

Periodontitis is characterized by bacterially induced inflammatory destruction of periodontal tissue. This also affects fibroblasts of the human periodontal ligaments (HPdLF), which play a coordinating role in force-induced tissue and alveolar bone remodeling. Excessive inflammation in the oral tissues has been observed with simultaneous stimulation by pathogens and mechanical forces. Recently, elevated levels of growth differentiation factor 15 (GDF15), an immuno-modulatory member of the transforming growth factor (TGFB) superfamily, were detected under periodontitis-like conditions and in force-stressed PdL cells. In view of the pleiotropic effects of GDF15 in various tissues, this study aims to investigate the role of GDF15 in P. gingivalis-related inflammation of HPdLF and its effect on the excessive inflammatory response to concurrent compressive stress. To this end, the expression and secretion of cytokines (IL6, IL8, COX2/PGE2, TNFα) and the activation of THP1 monocytic cells were analyzed in GDF15 siRNA-treated HPdLF stimulated with P. gingivalis lipopolysaccharides alone and in combination with compressive force. GDF15 knockdown significantly reduced cytokine levels and THP1 activation in LPS-stimulated HPdLF, which was less pronounced with additional compressive stress. Overall, our data suggest a pro-inflammatory role for GDF15 in periodontal disease and demonstrate that GDF15 partially modulates the force-induced excessive inflammatory response of PdLF under these conditions.


Assuntos
Infecções por Bacteroidaceae/imunologia , Fibroblastos/imunologia , Fator 15 de Diferenciação de Crescimento/imunologia , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Porphyromonas gingivalis/imunologia , Células Cultivadas , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/imunologia , Periodontite/imunologia
11.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199865

RESUMO

In obese patients, enhanced serum levels of free fatty acids (FFA), such as palmitate (PA) or oleate (OA), are associated with an increase in systemic inflammatory markers. Bacterial infection during periodontal disease also promotes local and systemic low-grade inflammation. How both conditions concomitantly impact tooth movement is largely unknown. Thus, the aim of this study was to address the changes in cytokine expression and the secretion of human periodontal ligament fibroblasts (HPdLF) due to hyperlipidemic conditions, when additionally stressed by bacterial and mechanical stimuli. To investigate the impact of obesity-related hyperlipidemic FFA levels on HPdLF, cells were treated with 200 µM PA or OA prior to the application of 2 g/cm2 compressive force. To further determine the additive impact of bacterial infection, HPdLF were stimulated with lipopolysaccharides (LPS) obtained from Porphyromonas gingivalis. In mechanically compressed HPdLF, PA enhanced COX2 expression and PGE2 secretion. When mechanically stressed HPdLF were additionally stimulated with LPS, the PGE2 and IL6 secretion, as well as monocyte adhesion, were further increased in PA-treated cultures. Our data emphasize that a hyperlipidemic condition enhances the susceptibility of HPdLF to an excessive inflammatory response to compressive forces, when cells are concomitantly exposed to bacterial components.


Assuntos
Fibroblastos/imunologia , Hiperlipidemias/fisiopatologia , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Ligamento Periodontal/imunologia , Porphyromonas gingivalis/química , Estresse Mecânico , Força Compressiva , Citocinas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/patologia , Pressão
12.
Acc Chem Res ; 51(2): 214-222, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29313671

RESUMO

Materials with the crystal structure of γ-brass type (Cu5Zn8 type) are typical representatives of intermetallic compounds. From the electronic point of view, they are often interpreted using the valence electron concentration approach of Hume-Rothery, developed previously for transition metals. The γ-brass-type phases of the main-group elements are rather rare. The intermetallic compound Be21Pt5, a new member of this family, was synthesized, and its crystal structure, chemical bonding, and physical properties were characterized. Be21Pt5 crystallizes in the cubic space group F4̅3m with lattice parameter a = 15.90417(3) Å and 416 atoms per unit cell. From the crystallographic point of view, the binary substance represents a special family of intermetallic compounds called complex metallic alloys (CMA). The crystal structure was solved by a combination of synchrotron and neutron powder diffraction data. Besides the large difference in the scattering power of the components, the structure solution was hampered by the systematic presence of very weak reflections mimicking wrong symmetry. The structural motif of Be21Pt5 is described as a 2 × 2 × 2 superstructure of the γ-brass structure (Cu5Zn8 type) or 6 × 6 × 6 superstructure of the simple bcc structural pattern with distinct distribution of defects. The main building elements of the crystal structure are four types of nested polyhedral units (clusters) with the compositions Be22Pt4 and Be20Pt6. Each cluster contains four shells (4 + 4 + 6 + 12 atoms). Clusters with different compositions reveal various occupation of the shells by platinum and beryllium. Polyhedral nested units with the same composition differ by the distance of the shell atoms to the cluster center. Analysis of chemical bonding was made applying the electron localizability approach, a quantum chemical technique operating in real space that is proven to be especially efficient for intermetallic compounds. Evaluations of the calculated electron density and electron localizability indicator (ELI-D) revealed multicenter bonding, being in accordance with the low valence electron count per atom in Be21Pt5. A new type of atomic interactions in intermetallic compounds, cluster bonds involving 8 or even 14 atoms, is found in the clusters with shorter distances between the shell atoms and the cluster centers. In the remaining clusters, four- and five-center bonds characterize the atomic interactions. Multicluster interactions within the polyhedral nested units and three-center polar intercluster bonds result in a three-dimensional framework resembling the structural pattern of NaCl. Be21Pt5 is a diamagnetic metal and one of rather rare CMA compounds revealing superconductivity (Tc = 2.06 K).

13.
Chemistry ; 25(41): 9580-9585, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31070817

RESUMO

The preparation and structural characterization of an original Th peroxo sulfate dihydrate, crystallizing at room temperature in the form of stable 1D polymeric microfibres is described. A combination of laboratory and synchrotron techniques allowed solution of the structure of the Th(O2 )(SO4 )(H2 O)2 compound, which crystallizes in a new structure type in the space group Pna21 of the orthorhombic crystal system. Particularly, the peroxide ligand coordinates to the Th cations in an unusual µ3 -η2 :η2 :η2 bridging mode, forming an infinite 1D chain decorated with sulfato ligands exhibiting simultaneously monodentate and bidentate coordination modes.

14.
Chemistry ; 25(53): 12332-12341, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31206850

RESUMO

The development of the nuclear industry has raised multiple questions about its impact on the biotope and humans. Proteins are key biomolecules in cell machinery and essential in deciphering toxicological processes. Phosvitin was chosen as a relevant model for phosphorylated proteins because of its important role as an iron, calcium, and magnesium storage protein in egg yolk. A multitechnique spectroscopic investigation was performed to reveal the coordination geometry of two oxocations of the actinide family (actinyl UVI , NpV ) in speciation with phosvitin. IR spectroscopy revealed phosphoryl groups as the main functional groups interacting with UVI . This was confirmed through laser luminescence spectroscopy (U) and UV/Vis absorption spectroscopy (Np). For UVI , X-ray absorption spectroscopy at the LIII edge revealed a small contribution of bidentate binding present, along with predominantly monodentate binding of phosphoryl groups; for NpV , uniquely bidentate binding was revealed. As a perspective to this work, X-ray absorption spectroscopy speciation of UVI and NpV in the extracted yolk of living eggs of the dogfish Scyliorhinus canicula was determined; this corroborated the binding of phosphorous together with a reduction of the actinyl moiety. Such data are essential to pinpoint the mechanisms of heavy metals (actinyls) accumulation and toxicity in oviparous organisms, and therefore, contribute to a shift from descriptive approaches to predictive toxicology.


Assuntos
Gema de Ovo/metabolismo , Fosvitina/metabolismo , Cálcio/metabolismo , Humanos , Ferro/metabolismo , Magnésio/metabolismo , Minerais , Fósforo/química , Fosvitina/química , Espectroscopia por Absorção de Raios X
15.
Chem Res Toxicol ; 31(10): 1032-1041, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30207697

RESUMO

Because of its chemo- and radiotoxicity, the incorporation of uranium into human body via ingestion potentially poses a serious health risk. When ingested, the gastrointestinal fluids are the primary media to interact with uranium, eventually influencing and even determining its biochemical behavior in the gastrointestinal tract and thereafter. The chemical interactions between uranium and the components of gastrointestinal fluids are, however, poorly understood to date. In this study, the complexation of uranium(VI) (as the uranyl ion, UO22+) with the protein α-amylase, one of the major enzymes in saliva and pancreatic juices, was investigated over a wide range of pH or uranium/α-amylase concentrations covering physiological conditions. Macroscopic sorption experiments suggested a strong and fast complexation of UO22+ to α-amylase between pH 5 and 7. Potentiometric titration was employed to determine the complex stability constants for the relevant UO22+ α-amylase complexes, which is crucial for reliable thermochemical modeling to assess the potential health risk of uranium. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed that α-amylase is interacting with UO22+ primarily via its carboxylate groups presumably from the aspartic acid and glutamic acid side chains. The effect of UO22+ on the enzyme activity was also investigated to understand the potential implication of uranium for the in vivo functions of the digestive fluids, indicating that the presence of uranium inhibits the enzyme activity. This inhibitory effect can be, however, suppressed by an excess of calcium.


Assuntos
Compostos de Urânio/química , alfa-Amilases/metabolismo , Ensaios Enzimáticos , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência , Compostos de Urânio/metabolismo , Espectroscopia por Absorção de Raios X , alfa-Amilases/química
16.
Langmuir ; 34(41): 12270-12278, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30217107

RESUMO

We studied the adsorption behavior of ZrO2 nanoparticles on a muscovite (001) surface in the presence of cations from the alkali series (Li+, Na+, K+, Rb+, and Cs+). The results of X-ray reflectivity, i.e., specular crystal truncation rod and resonant anomalous X-ray reflectivity in combination with AFM images, show that the sorption of ZrO2 nanoparticles is significantly affected by the binding mode of alkali ions on the muscovite (001) surface. From solutions containing alkali ions binding as outer sphere surface complexes (i.e., Li+ and Na+), higher uptake of Zr4+ is observed corresponding to the binding of larger nanoparticles, which relatively easily replace the loosely bound alkali ions. However, Zr4+ uptake in solutions containing alkali ions binding as inner sphere surface complexes (i.e., K+, Rb+, and Cs+) is significantly lower, and smaller nanoparticles are found at the interface. In addition, the uptake of Zr4+ in the presence of inner sphere bound cations displays a strong linear relationship with the hydration energy of the coexisting alkali ion. The linear trend can be interpreted as competitive adsorption between ZrO2 nanoparticles and inner sphere bound alkali cations, which are replaced on the surface and undergo rehydration after release to the solution. The rehydration of alkali ions gives rise to a large energy gain, which dominates the reaction energy of the competitive adsorption process. The competitive adsorption mechanism of ZrO2 nanoparticles and alkali ions is discussed comprehensively to highlight the potential relationship between the hydration effect of alkali ions and the effect of charge density of the nanoparticles.

17.
Inorg Chem ; 57(23): 14890-14894, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30411877

RESUMO

Most materials expand with temperature because of the anharmonicity of lattice vibration, and only a few shrink with increasing temperature. UO2, whose thermal properties are of significant importance for the safe use of nuclear energy, was considered for a long time to belong to the first group. This view was challenged by recent in situ synchrotron X-ray diffraction measurements, showing an unusual thermal decrease of the U-O distances. This thermal shrinkage was interpreted as a consequence of the splitting of the U-O distances due to a change in the U local order from Fm3̅ m to Pa3̅. In contrast to these previous investigations and using an element-specific synchrotron-based spectroscopic method, we show here that the U sublattice remains locally of the fluorite type from 50 to 1265 K, and that the decrease of the first U-O bond lengths is associated with an increase of the disorder.

18.
Chemistry ; 23(28): 6864-6875, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28294439

RESUMO

Three tetravalent actinide (AnIV ) hexanuclear clusters with the octahedral core [An6 (OH)4 O4 ]12+ (AnIV =UIV , NpIV , PuIV ) were structurally characterized in the solid state and in aqueous solution by using single-crystal X-ray diffraction, X-ray absorption, IR, Raman, and UV/Vis spectroscopy. The observed structure, [An6 (OH)4 O4 (H2 O)8 (HDOTA)4 ]⋅HCl/HNO3 ⋅n H2 O (An=U(I), Np(II), Pu(III)), consists of a AnIV hexanuclear pseudo-octahedral cluster stabilized by DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) ligands. The six actinide atoms are connected through alternate µ3 -O2- and µ3 -OH- groups. Extended X-ray absorption fine structure (EXAFS) investigations combined with UV/Vis spectroscopy provide evidence for the same local structure in moderate acidic and neutral aqueous solutions. The synthesis mechanism was partially elucidated and the main physicochemical properties (pH range stability, solubility, and protonation constant) of the cluster were determined. The results underline the importance of: 1) considering such polynuclear species in thermodynamic models, and 2) competing reactions between hydrolysis and complexation. It is interesting to note that the same synthesis route with thorium(IV) led to the formation of a dimer, Th2 (H2 O)10 (H2 DOTA)2 ⋅4 NO3 ⋅x H2 O (IV), which contrasts to the structure of the other AnIV hexamers.

19.
Inorg Chem ; 56(5): 2473-2480, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28199091

RESUMO

Complex formation and the coordination of zirconium with acetic acid were investigated with Zr K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) and single-crystal diffraction. Zr K-edge EXAFS spectra show that a stepwise increase of acetic acid in aqueous solution with 0.1 M Zr(IV) leads to a structural rearrangement from initial tetranuclear hydrolysis species [Zr4(OH)8(OH2)16]8+ to a hexanuclear acetate species Zr6(O)4(OH)4(CH3COO)12. The solution species Zr6(O)4(OH)4(CH3COO)12 was preserved in crystals by slow evaporation of the aqueous solution. Single-crystal diffraction reveals an uncharged hexanuclear cluster in solid Zr6(µ3-O)4(µ3-OH)4(CH3COO)12·8.5H2O. EXAFS measurements show that the structures of the hexanuclear zirconium acetate cluster in solution and the solid state are identical.

20.
Inorg Chem ; 56(5): 2902-2913, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28205439

RESUMO

Four metal-organic coordination polymers bearing uranium or neptunium have been hydrothermally synthesized from a tetravalent actinide chloride (AnCl4) and phthalic (1,2-H2bdc) or mellitic (H6mel) acid in aqueous media at 130 °C. With the phthalate ligand, two analogous assemblies ([AnO(H2O)(1,2-bdc)]2·H2O; An = U4+ (1) or Np4+ (2)) have been isolated, in which the square-antiprismatic polyhedra of AnO8 are linked to each other via µ3-oxo groups with an edge-sharing mode to materialize infinite zigzag ribbons. The phthalate molecules play a role in connecting the adjacent zigzag chains to build a two-dimensional (2D) network. Water molecules are bonded to the actinide center or found intercalated between the layers. With the mellitate ligand, two distinct structures have been identified. The uranium-based compound [U2(OH)2(H2O)2(mel)] (3) exhibits a three-dimensional (3D) structure composed of the dinuclear units of UO8 polyhedra (square antiprism), which are further linked via the µ2-hydroxo groups. The mellitate linkers use their carboxylate groups to connect the dinuclear units, eventually building a 3D framework. The compound obtained for the neptunium mellitate ([(NpO2)10(H2O)14(Hmel)2]·12H2O (4)) reveals oxidation of the initial NpIV to NpV under the applied hydrothermal synthetic conditions, yielding the neptunyl(V) (NpO2+) unit with a pentagonal-bipyramidal NpO7 environment. This further leads to the formation of a layered assembly of the square-frame NpO7 sheets via the bridging oxygen atoms from the neptunyl oxo groups, which further coordinate to the pentagonal equatorial coordination plane of the adjacent neptunium unit (i.e., cation-cation interactions). In compound 4, the mellitate molecules act as bridging linkers between the NpO7 sheets by using four of their carboxylage groups, eventually building up a 3D structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA