Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 185(3): 485-492.e10, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051367

RESUMO

An outbreak of over 1,000 COVID-19 cases in Provincetown, Massachusetts (MA), in July 2021-the first large outbreak mostly in vaccinated individuals in the US-prompted a comprehensive public health response, motivating changes to national masking recommendations and raising questions about infection and transmission among vaccinated individuals. To address these questions, we combined viral genomic and epidemiological data from 467 individuals, including 40% of outbreak-associated cases. The Delta variant accounted for 99% of cases in this dataset; it was introduced from at least 40 sources, but 83% of cases derived from a single source, likely through transmission across multiple settings over a short time rather than a single event. Genomic and epidemiological data supported multiple transmissions of Delta from and between fully vaccinated individuals. However, despite its magnitude, the outbreak had limited onward impact in MA and the US overall, likely due to high vaccination rates and a robust public health response.


Assuntos
COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/transmissão , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Criança , Pré-Escolar , Busca de Comunicante/métodos , Surtos de Doenças , Feminino , Genoma Viral , Humanos , Lactente , Recém-Nascido , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Epidemiologia Molecular , Filogenia , SARS-CoV-2/classificação , Vacinação , Sequenciamento Completo do Genoma , Adulto Jovem
2.
PLoS Biol ; 18(2): e3000611, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045407

RESUMO

Unusually large outbreaks of mumps across the United States in 2016 and 2017 raised questions about the extent of mumps circulation and the relationship between these and prior outbreaks. We paired epidemiological data from public health investigations with analysis of mumps virus whole genome sequences from 201 infected individuals, focusing on Massachusetts university communities. Our analysis suggests continuous, undetected circulation of mumps locally and nationally, including multiple independent introductions into Massachusetts and into individual communities. Despite the presence of these multiple mumps virus lineages, the genomic data show that one lineage has dominated in the US since at least 2006. Widespread transmission was surprising given high vaccination rates, but we found no genetic evidence that variants arising during this outbreak contributed to vaccine escape. Viral genomic data allowed us to reconstruct mumps transmission links not evident from epidemiological data or standard single-gene surveillance efforts and also revealed connections between apparently unrelated mumps outbreaks.


Assuntos
Surtos de Doenças , Genoma Viral/genética , Vírus da Caxumba/genética , Caxumba/epidemiologia , Caxumba/transmissão , Genótipo , Humanos , Epidemiologia Molecular , Caxumba/virologia , Vírus da Caxumba/classificação , Mutação , Filogenia , Análise de Sequência de DNA , Estados Unidos/epidemiologia , Vacinação/estatística & dados numéricos , Proteínas Virais/genética
3.
Nature ; 546(7658): 411-415, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28538734

RESUMO

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Assuntos
Filogenia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/genética , Zika virus/isolamento & purificação , Animais , Brasil/epidemiologia , Colômbia/epidemiologia , Culicidae/virologia , Surtos de Doenças/estatística & dados numéricos , Genoma Viral/genética , Mapeamento Geográfico , Honduras/epidemiologia , Humanos , Metagenoma/genética , Epidemiologia Molecular , Mosquitos Vetores/virologia , Mutação , Vigilância em Saúde Pública , Porto Rico/epidemiologia , Estados Unidos/epidemiologia , Zika virus/classificação , Zika virus/patogenicidade , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/epidemiologia
4.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618651

RESUMO

Eastern equine encephalitis virus (EEEV) has a high case-fatality rate in horses and humans, and Florida has been hypothesized to be the source of EEEV epidemics for the northeastern United States. To test this hypothesis, we sequenced complete genomes of 433 EEEV strains collected within the United States from 1934 to 2014. Phylogenetic analysis suggested EEEV evolves relatively slowly and that transmission is enzootic in Florida, characterized by higher genetic diversity and long-term local persistence. In contrast, EEEV strains in New York and Massachusetts were characterized by lower genetic diversity, multiple introductions, and shorter local persistence. Our phylogeographic analysis supported a source-sink model in which Florida is the major source of EEEV compared to the other localities sampled. In sum, this study revealed the complex epidemiological dynamics of EEEV in different geographic regions in the United States and provided general insights into the evolution and transmission of other avian mosquito-borne viruses in this region.IMPORTANCE Eastern equine encephalitis virus (EEEV) infections are severe in horses and humans on the east coast of the United States with a >90% mortality rate in horses, an ∼33% mortality rate in humans, and significant brain damage in most human survivors. However, little is known about the evolutionary characteristics of EEEV due to the lack of genome sequences. By generating large collection of publicly available complete genome sequences, this study comprehensively determined the evolution of the virus, described the epidemiological dynamics of EEEV in different states in the United States, and identified Florida as one of the major sources. These results may have important implications for the control and prevention of other mosquito-borne viruses in the Americas.


Assuntos
Vírus da Encefalite Equina do Leste/classificação , Encefalomielite Equina/transmissão , Sequenciamento Completo do Genoma/métodos , Animais , Vírus da Encefalite Equina do Leste/genética , Encefalomielite Equina/epidemiologia , Florida/epidemiologia , Variação Genética , Tamanho do Genoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Cavalos , Massachusetts/epidemiologia , New York/epidemiologia , Filogenia , Filogeografia
5.
medRxiv ; 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34704102

RESUMO

Multiple summer events, including large indoor gatherings, in Provincetown, Massachusetts (MA), in July 2021 contributed to an outbreak of over one thousand COVID-19 cases among residents and visitors. Most cases were fully vaccinated, many of whom were also symptomatic, prompting a comprehensive public health response, motivating changes to national masking recommendations, and raising questions about infection and transmission among vaccinated individuals. To characterize the outbreak and the viral population underlying it, we combined genomic and epidemiological data from 467 individuals, including 40% of known outbreak-associated cases. The Delta variant accounted for 99% of sequenced outbreak-associated cases. Phylogenetic analysis suggests over 40 sources of Delta in the dataset, with one responsible for a single cluster containing 83% of outbreak-associated genomes. This cluster was likely not the result of extensive spread at a single site, but rather transmission from a common source across multiple settings over a short time. Genomic and epidemiological data combined provide strong support for 25 transmission events from, including many between, fully vaccinated individuals; genomic data alone provides evidence for an additional 64. Together, genomic epidemiology provides a high-resolution picture of the Provincetown outbreak, revealing multiple cases of transmission of Delta from fully vaccinated individuals. However, despite its magnitude, the outbreak was restricted in its onward impact in MA and the US, likely due to high vaccination rates and a robust public health response.

6.
Emerg Microbes Infect ; 9(1): 903-912, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32302268

RESUMO

Jamestown Canyon virus (JCV) is a neuroinvasive arbovirus that is found throughout North America and increasingly recognized as a public health concern. From 2004 to 2012, an average of 1.7 confirmed cases were reported annually in the United States, whereas from 2013 to 2018 this figure increased over seventeen-fold to 29.2 cases per year. The rising number of reported human infections highlights the need for better understanding of the clinical manifestations and epidemiology of JCV. Here, we describe nine patients diagnosed with neuroinvasive JCV infection in Massachusetts from 2013, the year of the first reported case in the state, to 2017. Because current diagnostic testing relies on serology, which is complicated by cross-reactivity with related orthobunyaviruses and can be negative in immunosuppressed patients, we developed and evaluated an RT-qPCR assay for detection of JCV RNA. We tested this on the available archived serum from two patients, but did not detect viral RNA. JCV is transmitted by multiple mosquito species and its primary vector in Massachusetts is unknown, so we additionally applied the RT-qPCR assay and confirmatory RNA sequencing to assess JCV prevalence in a vector candidate, Ochlerotatus canadensis. We identified JCV in 0.6% of mosquito pools, a similar prevalence to neighboring Connecticut. We assembled the first Massachusetts JCV genome directly from a mosquito sample, finding high identity to JCV isolates collected over a 60-year period. Further studies are needed to reconcile the low vector prevalence and low rate of viral evolutionary change with the increasing number of reported cases.


Assuntos
Culicidae/virologia , Vírus da Encefalite da Califórnia , Encefalite/virologia , Meningite/virologia , Ochlerotatus/virologia , Adulto , Idoso , Animais , Vetores de Doenças , Encefalite/diagnóstico , Vírus da Encefalite da Califórnia/genética , Vírus da Encefalite da Califórnia/imunologia , Vírus da Encefalite da Califórnia/isolamento & purificação , Feminino , Genoma Viral , Humanos , Masculino , Massachusetts/epidemiologia , Meningite/diagnóstico , Pessoa de Meia-Idade , Mosquitos Vetores/virologia , Filogenia , Prevalência , RNA Viral
7.
Nat Biotechnol ; 37(2): 160-168, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718881

RESUMO

Metagenomic sequencing has the potential to transform microbial detection and characterization, but new tools are needed to improve its sensitivity. Here we present CATCH, a computational method to enhance nucleic acid capture for enrichment of diverse microbial taxa. CATCH designs optimal probe sets, with a specified number of oligonucleotides, that achieve full coverage of, and scale well with, known sequence diversity. We focus on applying CATCH to capture viral genomes in complex metagenomic samples. We design, synthesize, and validate multiple probe sets, including one that targets the whole genomes of the 356 viral species known to infect humans. Capture with these probe sets enriches unique viral content on average 18-fold, allowing us to assemble genomes that could not be recovered without enrichment, and accurately preserves within-sample diversity. We also use these probe sets to recover genomes from the 2018 Lassa fever outbreak in Nigeria and to improve detection of uncharacterized viral infections in human and mosquito samples. The results demonstrate that CATCH enables more sensitive and cost-effective metagenomic sequencing.


Assuntos
Biologia Computacional/métodos , Genoma Viral , Metagenoma , Metagenômica , Animais , Culicidae/virologia , Surtos de Doenças , Biblioteca Gênica , Variação Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Febre Lassa/virologia , Nigéria/epidemiologia , Sondas de Oligonucleotídeos , Oligonucleotídeos/genética , Análise de Sequência de DNA , Viroses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA