Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 674, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972970

RESUMO

BACKGROUND: Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS: D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION: Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.


Assuntos
Consórcios Microbianos , Poríferos , Simbiose , Transcriptoma , Simbiose/genética , Poríferos/microbiologia , Poríferos/genética , Animais , Consórcios Microbianos/genética , Perfilação da Expressão Gênica , Mar Mediterrâneo
2.
Antonie Van Leeuwenhoek ; 117(1): 56, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489089

RESUMO

A new member of the family Flavobacteriaceae (termed Hal144T) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144T 16S rRNA gene sequence revealed similarities from 94.3 to 96.6% to the nearest type strains of the genus Maribacter. The phylogenetic tree of the 16S rRNA gene sequences depicted a cluster of strain Hal144T with its closest relatives Maribacter aestuarii GY20T (96.6%) and Maribacter thermophilus HT7-2T (96.3%). Genome phylogeny showed that Maribacter halichondriae Hal144T branched from a cluster consisting of Maribacter arenosus, Maribacter luteus, and Maribacter polysiphoniae. Genome comparisons of strain Maribacter halichondriae Hal144T with Maribacter sp. type strains exhibited average nucleotide identities in the range of 75-76% and digital DNA-DNA hybridisation values in the range of 13.1-13.4%. Compared to the next related type strains, strain Hal144T revealed unique genomic features such as phosphoenolpyruvate-dependent phosphotransferase system pathway, serine-glyoxylate cycle, lipid A 3-O-deacylase, 3-hexulose-6-phosphate synthase, enrichment of pseudogenes and of genes involved in cell wall and envelope biogenesis, indicating an adaptation to the host. Strain Hal144T was determined to be Gram-negative, mesophilic, strictly aerobic, flexirubin positive, resistant to aminoglycoside antibiotics, and able to utilize N-acetyl-ß-D-glucosamine. Optimal growth occurred at 25-30 °C, within a salinity range of 2-6% sea salt, and a pH range between 5 and 8. The major fatty acids identified were C17:0 3-OH, iso-C15:0, and iso-C15:1 G. The DNA G + C content of strain Hal144T was 41.4 mol%. Based on the polyphasic approach, strain Hal144T represents a novel species of the genus Maribacter, and we propose the name Maribacter halichondriae sp. nov. The type strain is Hal144T (= DSM 114563T = LMG 32744T).


Assuntos
Flavobacteriaceae , Poríferos , Animais , Água do Mar , Fosfatidiletanolaminas/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Vitamina K 2/química , Ácidos Graxos/química
3.
BMC Biol ; 20(1): 100, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524305

RESUMO

Marine sponges (phylum Porifera) form symbioses with diverse microbial communities that can be transmitted between generations through their developmental stages. Here, we integrate embryology and microbiology to review how symbiotic microorganisms are transmitted in this early-diverging lineage. We describe that vertical transmission is widespread but not universal, that microbes are vertically transmitted during a select developmental window, and that properties of the developmental microbiome depends on whether a species is a high or low microbial abundance sponge. Reproduction, development, and symbiosis are thus deeply rooted, but why these partnerships form remains the central and elusive tenet of these developmental symbioses.


Assuntos
Microbiota , Poríferos , Animais , Filogenia , Poríferos/genética , Poríferos/microbiologia , RNA Ribossômico 16S , Reprodução , Simbiose
4.
Environ Microbiol ; 24(12): 6392-6410, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250983

RESUMO

Marine sponges are known for their complex and stable microbiomes. However, the lack of a gnotobiotic sponge-model and experimental methods to manipulate both the host and the microbial symbionts currently limit our mechanistic understanding of sponge-microbial symbioses. We have used the North Atlantic sponge species Halichondria panicea to evaluate the use of antibiotics to generate gnotobiotic sponges. We further asked whether the microbiome can be reestablished via recolonization with the natural microbiome. Experiments were performed in marine gnotobiotic facilities equipped with a custom-made, sterile, flow-through aquarium system. Bacterial abundance dynamics were monitored qualitatively and quantitatively by 16 S rRNA gene amplicon sequencing and qPCR, respectively. Antibiotics induced dysbiosis by favouring an increase of opportunistic, antibiotic-resistant bacteria, resulting in more complex, but less specific bacteria-bacteria interactions than in untreated sponges. The abundance of the dominant symbiont, Candidatus Halichondribacter symbioticus, remained overall unchanged, reflecting its obligately symbiotic nature. Recolonization with the natural microbiome could not reverse antibiotic-induced dysbiosis. However, single bacterial taxa that were transferred, successfully recolonized the sponge and affected bacteria-bacteria interactions. By experimentally manipulating microbiome composition, we could show the stability of a sponge-symbiont clade despite microbiome dysbiosis. This study contributes to understanding both host-bacteria and bacteria-bacteria interactions in the sponge holobiont.


Assuntos
Microbiota , Poríferos , Rhodobacteraceae , Animais , Poríferos/microbiologia , Disbiose , Antibacterianos , Microbiota/genética , Simbiose , Rhodobacteraceae/genética , Filogenia , RNA Ribossômico 16S/genética
5.
PLoS Biol ; 17(6): e3000298, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31216282

RESUMO

Almost all animals and plants are inhabited by diverse communities of microorganisms, the microbiota, thereby forming an integrated entity, the metaorganism. Natural selection should favor hosts that shape the community composition of these microbes to promote a beneficial host-microbe symbiosis. Indeed, animal hosts often pose selective environments, which only a subset of the environmentally available microbes are able to colonize. How these microbes assemble after colonization to form the complex microbiota is less clear. Neutral models are based on the assumption that the alternatives in microbiota community composition are selectively equivalent and thus entirely shaped by random population dynamics and dispersal. Here, we use the neutral model as a null hypothesis to assess microbiata composition in host organisms, which does not rely on invoking any adaptive processes underlying microbial community assembly. We show that the overall microbiota community structure from a wide range of host organisms, in particular including previously understudied invertebrates, is in many cases consistent with neutral expectations. Our approach allows to identify individual microbes that are deviating from the neutral expectation and are therefore interesting candidates for further study. Moreover, using simulated communities, we demonstrate that transient community states may play a role in the deviations from the neutral expectation. Our findings highlight that the consideration of neutral processes and temporal changes in community composition are critical for an in-depth understanding of microbiota-host interactions.


Assuntos
Microbiota , Animais , Humanos , Modelos Teóricos , Plantas , Simbiose
6.
Environ Microbiol ; 23(8): 4489-4504, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34159693

RESUMO

Sponges possess exceptionally diverse associated microbial communities and play a major role in (re)cycling of dissolved organic matter (DOM) in marine ecosystems. Linking sponge-associated community structure with DOM utilization is essential to understand host-microbe interactions in the uptake, processing, and exchange of resources. We coupled, for the first time, DNA-stable isotope probing (DNA-SIP) with 16S rRNA amplicon sequencing in a sponge holobiont to identify which symbiotic bacterial taxa are metabolically active in DOM uptake. Parallel incubation experiments with the sponge Plakortis angulospiculatus were amended with equimolar quantities of unlabelled (12 C) and labelled (13 C) DOM. Seven bacterial amplicon sequence variants (ASVs), belonging to the phyla PAUC34f, Proteobacteria, Poribacteria, Nitrospirae, and Chloroflexi, were identified as the first active consumers of DOM. Our results support the predictions that PAUC34f, Poribacteria, and Chloroflexi are capable of organic matter degradation through heterotrophic carbon metabolism, while Nitrospirae may have a potential mixotrophic metabolism. We present a new analytical application of DNA-SIP to detect substrate incorporation into a marine holobiont with a complex associated bacterial community and provide new experimental evidence that links the identity of diverse sponge-associated bacteria to the consumption of DOM.


Assuntos
Microbiota , Poríferos , Animais , Bactérias/genética , DNA , Isótopos , RNA Ribossômico 16S/genética
7.
Mol Ecol ; 29(22): 4412-4427, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32931063

RESUMO

Most animals, including sponges (Porifera), have species-specific microbiomes. Which genetic or environmental factors play major roles structuring the microbial community at the intraspecific level in sponges is, however, largely unknown. In this study, we tested whether geographic location or genetic structure of conspecific sponges influences their microbial assembly. For that, we used three sponge species with different rates of gene flow, and collected samples along their entire distribution range (two from the Mediterranean and one from the Southern Ocean) yielding a total of 393 samples. These three sponge species have been previously analysed by microsatellites or single nucleotide polymorphisms, and here we investigate their microbiomes by amplicon sequencing of the microbial 16S rRNA gene. The sponge Petrosia ficiformis, with highly isolated populations (low gene flow), showed a stronger influence of the host genetic distance on the microbial composition than the spatial distance. Host-specificity was therefore detected at the genotypic level, with individuals belonging to the same host genetic cluster harbouring more similar microbiomes than distant ones. On the contrary, the microbiome of Ircinia fasciculata and Dendrilla antarctica - both with weak population structure (high gene flow) - seemed influenced by location rather than by host genetic distance. Our results suggest that in sponge species with high population structure, the host genetic cluster influence the microbial community more than the geographic location.


Assuntos
Microbiota , Poríferos , Animais , Fluxo Gênico , Genótipo , Especificidade de Hospedeiro , Microbiota/genética , Filogenia , Poríferos/genética , RNA Ribossômico 16S/genética
8.
Arch Microbiol ; 202(4): 815-824, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31844948

RESUMO

Kiloniella laminariae is a true marine bacterium and the first member of the family and order, the Kiloniellaceae and Kiloniellales. K. laminariae LD81T (= DSM 19542T) was isolated from the marine macroalga Saccharina latissima and is a mesophilic, typical marine chemoheterotrophic aerobic bacterium with antifungal activity. Phylogenetic analysis of 16S rRNA gene sequence revealed the similarity of K. laminariae LD81T not only with three validly described species of the genus Kiloniella, but also with undescribed isolates and clone sequences from marine samples in the range of 93.6-96.7%. We report on the analysis of the draft genome of this alphaproteobacterium and describe some selected features. The 4.4 Mb genome has a G + C content of 51.4%, contains 4213 coding sequences including 51 RNA genes as well as 4162 protein-coding genes, and is a part of the Genomic Encyclopaedia of Bacteria and Archaea (GEBA) project. The genome provides insights into a number of metabolic properties, such as carbon and sulfur metabolism, and indicates the potential for denitrification and the biosynthesis of secondary metabolites. Comparative genome analysis was performed with K. laminariae LD81T and the animal-associated species Kiloniella majae M56.1T from a spider crab, Kiloniella spongiae MEBiC09566T from a sponge as well as Kiloniella litopenai P1-1 from a white shrimp, which all inhabit quite different marine habitats. The analysis revealed that the K. laminariae LD81T contains 1397 unique genes, more than twice the amount of the other species. Unique among others is a mixed PKS/NRPS biosynthetic gene cluster with similarity to the biosynthetic gene cluster responsible for the production of syringomycin.


Assuntos
Alphaproteobacteria/genética , Organismos Aquáticos/genética , Genômica , Filogenia , Alphaproteobacteria/classificação , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/microbiologia , Proteínas de Bactérias/genética , Composição de Bases , Phaeophyceae/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
9.
Int J Syst Evol Microbiol ; 70(7): 4305-4314, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32579104

RESUMO

A new member of the family Flavobacteriaceae was isolated from the biofilm of a stone at Nordstrand, a peninsula at the German North Sea shore. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain ANORD1T was most closely related to the validly described type strains Polaribacter porphyrae LNM-20T (97.0 %) and Polaribacter reichenbachii KMM 6386T (96.9 % 16S rRNA gene sequence similarity) and clustered with Polaribacter gangjinensis K17-16T (96.0 %). Strain ANORD1T was determined to be mesophilic, Gram-negative, non-motile and strictly aerobic. Optimal growth was observed at 20-30 °C, within a salinity range of 2-7 % sea salt and from pH 7-10. Like other type strains of the genus Polaribacter, ANORD1T was tested negative for flexirubin-type pigments, while carotenoid-type pigments were detected. The DNA G+C content of strain ANORD1T was 30.6 mol%. The sole respiratory quinone detected was menaquinone 6 (MK-6). The major fatty acids identified were C15 : 0, iso-C15 : 0, C15 : 1 ω6c and iso-C15 : 0 3-OH. Based on the polyphasic approach, strain ANORD1T represents a novel species in the genus Polaribacter, with the name Polaribacter septentrionalilitoris sp. nov. being proposed. The type strain is ANORD1T (=DSM 110039T=NCIMB 15081T=MTCC 12685T).


Assuntos
Biofilmes , Flavobacteriaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Carotenoides/química , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Mar do Norte , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Microb Ecol ; 79(1): 252-257, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31187177

RESUMO

Biodiversity is generally believed to be a main determinant of ecosystem functioning. This principle also applies to the microbiome and could consequently contribute to host health. According to ecological theory, communities are shaped by top predators whose direct and indirect interactions with community members cause stability and diversity. Bdellovibrio and like organisms (BALOs) are a neglected group of predatory bacteria that feed on Gram-negative bacteria and can thereby influence microbiome composition. We asked whether BALOs can predict biodiversity levels in microbiomes from distinct host groups and environments. We demonstrate that genetic signatures of BALOs are commonly found within the 16S rRNA reads from diverse host taxa. In many cases, their presence, abundance, and especially richness are positively correlated with overall microbiome diversity. Our findings suggest that BALOs can act as drivers of microbial alpha-diversity and should therefore be considered candidates for the restoration of microbiomes and the prevention of dysbiosis.


Assuntos
Bdellovibrio/fisiologia , Caenorhabditis elegans/microbiologia , Drosophila melanogaster/microbiologia , Hydra/microbiologia , Microbiota , Poríferos/microbiologia , Animais , Bdellovibrio/classificação , Bdellovibrio/genética , Bdellovibrio/isolamento & purificação , Biodiversidade , DNA Bacteriano/genética , Especificidade de Hospedeiro , Filogenia , Poríferos/classificação , RNA Ribossômico 16S/genética
11.
Nature ; 506(7486): 58-62, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476823

RESUMO

Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such 'talented' producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus 'Entotheonella' with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. 'Entotheonella' spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum 'Tectomicrobia'. The pronounced bioactivities and chemical uniqueness of 'Entotheonella' compounds provide significant opportunities for ecological studies and drug discovery.


Assuntos
Deltaproteobacteria/classificação , Deltaproteobacteria/metabolismo , Descoberta de Drogas , Animais , Vias Biossintéticas/genética , Deltaproteobacteria/genética , Deltaproteobacteria/fisiologia , Microbiologia Ambiental , Genes Bacterianos/genética , Genoma Bacteriano/genética , Metagenômica , Dados de Sequência Molecular , Família Multigênica/genética , Peptídeos/metabolismo , Policetídeos/metabolismo , Poríferos/metabolismo , Poríferos/microbiologia , Análise de Célula Única , Simbiose
12.
Gut ; 68(10): 1781-1790, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30658995

RESUMO

OBJECTIVE: The composition of the healthy human adult gut microbiome is relatively stable over prolonged periods, and representatives of the most highly abundant and prevalent species have been cultured and described. However, microbial abundances can change on perturbations, such as antibiotics intake, enabling the identification and characterisation of otherwise low abundant species. DESIGN: Analysing gut microbial time-series data, we used shotgun metagenomics to create strain level taxonomic and functional profiles. Community dynamics were modelled postintervention with a focus on conditionally rare taxa and previously unknown bacteria. RESULTS: In response to a commonly prescribed cephalosporin (ceftriaxone), we observe a strong compositional shift in one subject, in which a previously unknown species, UBorkfalki ceftriaxensis, was identified, blooming to 92% relative abundance. The genome assembly reveals that this species (1) belongs to a so far undescribed order of Firmicutes, (2) is ubiquitously present at low abundances in at least one third of adults, (3) is opportunistically growing, being ecologically similar to typical probiotic species and (4) is stably associated to healthy hosts as determined by single nucleotide variation analysis. It was the first coloniser after the antibiotic intervention that led to a long-lasting microbial community shift and likely permanent loss of nine commensals. CONCLUSION: The bloom of UB. ceftriaxensis and a subsequent one of Parabacteroides distasonis demonstrate the existence of monodominance community states in the gut. Our study points to an undiscovered wealth of low abundant but common taxa in the human gut and calls for more highly resolved longitudinal studies, in particular on ecosystem perturbations.


Assuntos
Antibacterianos/farmacologia , Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Metagenômica/métodos , Microbiota/genética , Bactérias/efeitos dos fármacos , Humanos , Microbiota/efeitos dos fármacos
13.
Artigo em Inglês | MEDLINE | ID: mdl-33512313

RESUMO

A Gram-stain-positive bacterium, strain RV15T, forming an extensively branched substrate mycelium and aerial hyphae that differentiate into spiral chains of spores, was isolated from a marine sponge Dysidea tupha collected from Rovinj (Croatia). Comparison of 16S rRNA gene sequences showed that strain RV15T is a member of the genus Streptomyces with highest sequence similarity to the type strains of Streptomyces caeruleatus (98.8 %), Streptomyces cyaneochromogenes (98.6 %) and Streptomyces shaanxiensis (98.5 %). Sequence similarities to all other Streptomyces types strains were below 98.5 %. The multilocus sequence analysis-based evolutionary distance, the average nucleotide identity value and the genome-to-genome distance of strain RV15T and the type strain of S. caeruleatus were clearly below the species cut-off values. Strain RV15T exhibited a quinone system composed of the major menaquinones MK-9(H4), MK-9(H6) and MK-9(H2), typical for the genus Streptomyces. The polar lipid profile of strain RV15T consisted of the predominant compounds diphosphatidylglycerol and phosphatidylethanolamine, moderate amounts of phosphatidylinositol, phosphatidylinositol mannoside, an unidentified lipid and an unidentified phospholipid. Major polyamines were spermine and spermidine. The diagnostic diaminoacid of the peptidoglycan was meso-diaminopimelic acid. The major fatty acids were iso C16 : 0, anteiso C17 : 1 ω9c and anteiso C17 : 0. The results of physiological and biochemical tests allowed further phenotypic differentiation of strain RV15T from its most-related species and hence clearly merits species status. We propose the name Streptomyces dysideae sp. nov. with the type strain RV15T (=DSM 42110T=LMG 27702T).

14.
Environ Microbiol ; 20(2): 561-576, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098761

RESUMO

Many marine sponges contain dense and diverse communities of associated microorganisms. Members of the 'sponge-associated unclassified lineage' (SAUL) are frequently recorded from sponges, yet little is known about these bacteria. Here we investigated the distribution and phylogenetic status of SAUL. A meta-analysis of the available literature revealed the widespread distribution of this clade and its association with taxonomically varied sponge hosts. Phylogenetic analyses, conducted using both 16S rRNA gene-based phylogeny and concatenated marker protein sequences, revealed that SAUL is a sister clade of the candidate phylum 'Latescibacteria'. Furthermore, we conducted a comprehensive analysis of two draft genomes assembled from sponge metagenomes, revealing novel insights into the physiology of this symbiont. Metabolic reconstruction suggested that SAUL members are aerobic bacteria with facultative anaerobic metabolism, with the capacity to degrade multiple sponge- and algae-derived carbohydrates. We described for the first time in a sponge symbiont the putative genomic capacity to transport phosphate into the cell and to produce and store polyphosphate granules, presumably constituting a phosphate reservoir for the sponge host in deprivation periods. Our findings suggest that the lifestyle of SAUL is symbiotic with the host sponge, and identify symbiont factors which may facilitate the establishment and maintenance of this relationship.


Assuntos
Bactérias Aeróbias/classificação , Poríferos/microbiologia , Animais , Bactérias Aeróbias/genética , Tipagem Molecular , Filogenia , RNA Bacteriano , RNA Ribossômico 16S , Simbiose
15.
J Nat Prod ; 80(4): 828-836, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355070

RESUMO

The metabolite profiles of three sponge-derived actinomycetes, namely, Micromonospora sp. RV43, Rhodococcus sp. RV157, and Actinokineospora sp. EG49 were investigated after elicitation with N-acetyl-d-glucosamine. 1H NMR fingerprint methodology was utilized to study the differences in the metabolic profiles of the bacterial extracts before and after elicitation. Our study found that the addition of N-acetyl-d-glucosamine modified the secondary metabolite profiles of the three investigated actinomycete isolates. N-Acetyl-d-glucosamine induced the production of 3-formylindole (11) and guaymasol (12) in Micromonospora sp. RV43, the siderophore bacillibactin 16, and surfactin antibiotic 17 in Rhodococcus sp. RV157 and increased the production of minor metabolites actinosporins E-H (21-24) in Actinokineospora sp. EG49. These results highlight the use of NMR fingerprinting to detect changes in metabolism following addition of N-acetyl-d-glucosamine. N-Acetyl-d-glucosamine was shown to have multiple effects including suppression of metabolites, induction of new metabolites, and increased production of minor compounds.


Assuntos
Acetilglucosamina/farmacologia , Actinobacteria , Poríferos/microbiologia , Actinobacteria/química , Actinobacteria/genética , Animais , Antibacterianos/farmacologia , Indóis , Metaboloma , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
16.
Mar Drugs ; 15(12)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29211005

RESUMO

A new cyclic dipeptide, petrocidin A (1), along with three known compounds-2,3-dihydroxybenzoic acid (2), 2,3-dihydroxybenzamide (3), and maltol (4)-were isolated from the solid culture of Streptomyces sp. SBT348. The strain Streptomyces sp. SBT348 had been prioritized in a strain collection of 64 sponge-associated actinomycetes based on its distinct metabolomic profile using liquid chromatography/high-resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). The absolute configuration of all α-amino acids was determined by HPLC analysis after derivatization with Marfey's reagent and comparison with commercially available reference amino acids. Structure elucidation was pursued in the presented study by mass spectrometry and NMR spectral data. Petrocidin A (1) and 2,3-dihydroxybenzamide (3) exhibited significant cytotoxicity towards the human promyelocytic HL-60 and the human colon adenocarcinoma HT-29 cell lines. These results demonstrated the potential of sponge-associated actinomycetes for the discovery of novel and pharmacologically active natural products.


Assuntos
Dipeptídeos/química , Peptídeos Cíclicos/química , Poríferos/química , Streptomyces/química , Actinobacteria/química , Aminoácidos/química , Animais , Produtos Biológicos/química , Cromatografia Líquida/métodos , Células HL-60 , Células HT29 , Humanos , Biologia Marinha/métodos , Metabolômica/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Espectrometria de Massas em Tandem/métodos
17.
BMC Genomics ; 17: 158, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26926518

RESUMO

BACKGROUND: Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. RESULTS: Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. CONCLUSIONS: Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses.


Assuntos
Microbiota/genética , Poríferos/genética , Poríferos/microbiologia , Animais , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Anotação de Sequência Molecular , Receptores Depuradores/genética , Análise de Sequência de DNA , Simbiose , Transcriptoma
18.
Appl Environ Microbiol ; 82(18): 5542-52, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27371584

RESUMO

UNLABELLED: Crown gall disease of grapevine is caused by virulent Agrobacterium strains and establishes a suitable habitat for agrobacteria and, potentially, other bacteria. The microbial community associated with grapevine plants has not been investigated with respect to this disease, which frequently results in monetary losses. This study compares the endophytic microbiota of organs from grapevine plants with or without crown gall disease and the surrounding vineyard soil over the growing seasons of 1 year. Amplicon-based community profiling revealed that the dominating factor causing differences between the grapevine microbiota is the sample site, not the crown gall disease. The soil showed the highest microbial diversity, which decreased with the distance from the soil over the root and the graft union of the trunk to the cane. Only the graft union microbiota was significantly affected by crown gall disease. The bacterial community of graft unions without a crown gall hosted transient microbiota, with the three most abundant bacterial species changing from season to season. In contrast, graft unions with a crown gall had a higher species richness, which in every season was dominated by the same three bacteria (Pseudomonas sp., Enterobacteriaceae sp., and Agrobacterium vitis). For in vitro-cultivated grapevine plantlets, A. vitis infection alone was sufficient to cause crown gall disease. Our data show that microbiota in crown galls is more stable over time than microbiota in healthy graft unions and that the microbial community is not essential for crown gall disease outbreak. IMPORTANCE: The characterization of bacterial populations in animal and human diseases using high-throughput deep-sequencing technologies, such as 16S amplicon sequencing, will ideally result in the identification of disease-specific microbiota. We analyzed the microbiota of the crown gall disease of grapevine, which is caused by infection with the bacterial pathogen Agrobacterium vitis. All other Agrobacterium species were found to be avirulent, even though they lived together with A. vitis in the same crown gall tumor. As has been reported for human cancer, the crown gall tumor also hosted opportunistic bacteria that are adapted to the tumor microenvironment. Characterization of the microbiota in various diseases using amplicon sequencing may help in early diagnosis, to serve as a preventative measure of disease in the future.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Doenças das Plantas/microbiologia , Tumores de Planta/microbiologia , Microbiologia do Solo , Vitis/microbiologia , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Endófitos/classificação , Endófitos/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Int J Syst Evol Microbiol ; 66(11): 4609-4613, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27503333

RESUMO

A Gram-stain-positive, non-endospore-forming actinobacterium (ARP1T) was isolated from the phyllosphere of Arabidopsis thaliana. On the basis of 16S rRNA gene sequence phylogeny strain ARP1T was placed into the genus Williamsia and the closest related species were Williamsia phyllosphaerae (98.5 % 16S rRNA gene sequence similarity), Williamsia deligens (98.5 %), Williamsia maris (98.3 %) and Williamsia serinedens (98.2 %). Genome-based comparison indicated a clear distinction to the type strains of those species with pairwise average nucleotide identities (ANI) between 76.4-78.4 %. The quinone system of strain ARP1T consisted predominantly of menaquinones MK-9(H2), MK-7(H2) and MK-8(H2), and the polar lipid profile contained the major compound diphosphatidylglycerol, and moderate amounts of phosphatidylethanolamine, phosphatidylglycerol and numerous unidentified lipids. Mycolic acids were present. These chemotaxonomic traits and the major fatty acids, which were C16 : 1ω7c, C16 : 0, C18 : 0, C18 : 1ω9c and tuberculostearic acid supported the affiliation of strain ARP1T to the genus Williamsia. Genotypic, physiological and biochemical testing revealed clear differences of strain ARP1T to the most closely related species of the genus Williamsia. Therefore strain ARP1T represents a novel species of this genus, for which the name Williamsia herbipolensis sp. nov. is proposed. The type strain is ARP1T (=DSM 46872T=LMG 28679T).


Assuntos
Actinomycetales/classificação , Arabidopsis/microbiologia , Filogenia , Folhas de Planta/microbiologia , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Alemanha , Ácidos Micólicos/análise , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
20.
Proc Natl Acad Sci U S A ; 110(9): 3229-36, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23391737

RESUMO

In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal-bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other's genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal-bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.


Assuntos
Bactérias/metabolismo , Disciplinas das Ciências Biológicas , Animais , Evolução Biológica , Ecossistema , Genoma , Crescimento e Desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA