Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(7): 1549-1557, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723129

RESUMO

The synthesis of two new polymers made from P(E-alt-MA) (poly(ethylene-alt-maleic anhydride) and possessing 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) ligand side chains in 3 and 6 mol%, respectively (P1 and P2, respectively) is described. These polymers were shown to be soluble in MeOH solution and, in the case of P1, also in water, while P2 needed prolonged heating to enable water dissolution. Btp ligands are known for coordinating both d- and f-metal ions and so, herein, we demonstrate by using both UV-Vis absorption, fluorescence emission, as well as time-gated phosphorescence spectroscopies, that both P1 and P2 can bind to Tb(III) ions to give rise to luminescent polymers. From the analysis of the titration data, which demonstrated large changes in the emission intensity properties of the polymer upon Tb(III) binding (ground state changes were also clearly observed, with the absorption being red-shifted at lower energy), we show that the dominant stoichiometry in solution is 1 : 2 (M : L; Tb(III) : btp ratio) which implies that two btp ligands from the polymer background are able to crosslink through lanthanide coordination and that the backbone of the polymer is very likely to aid in coordinating the ions.

2.
Org Biomol Chem ; 21(29): 5970-5976, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37431835

RESUMO

Herein the synthesis of 1,8-naphthalimides functionalised as the 3,4-dihydroxy-1,8-naphthalimide (catechol, Nap-Cat) and the corresponding 15-crown-5 (Nap-Crown) is reported. These compounds represent the first examples where these two recognition groups are directly incorporated into the 1,8-naphthalimide ring system. Both Nap-Cat and Nap-Crown were evaluated for their capacity to respond to analytes such as H2O2 (a mimic for cellular oxidation) and metal ions (as elements of environmental and physiological interest). While slow oxidation was observed for Nap-Cat upon prolonged exposure to H2O2, no significant changes in photophysical properties were observed upon treatment of Nap-Crown with metal ions.

3.
Inorg Chem ; 59(20): 14772-14784, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32869979

RESUMO

The synthesis and photophysical study of two dinuclear copper(I) complexes bearing a 2-(1H-imidazol-2-yl)pyrimidine bridging ligand are described. The tetrahedral coordination sphere of each copper center is completed through the use of a bulky bis(phosphine) ligand, either DPEphos or Xantphos. Temperature-dependent photophysical studies demonstrated emission through a combination of phosphorescence and thermally activated delayed fluorescence for both complexes, and an intense emission (ΦPL = 46%) was observed for a crystalline sample of one of the complexes reported. The photophysics of these two complexes is very sensitive to the environment. Two pseudopolymorphs of one of the dinuclear complexes were isolated, with distinct photophysics. The emission color of the crystals can be changed by grinding, and the differences in their photophysics before and after grinding are discussed.

4.
Org Biomol Chem ; 18(18): 3475-3480, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32329760

RESUMO

An investigation into the self-assembly of two 4-amino- and a 4-bromo-1,8-naphthalimide (Nap) based structures (1-3) possessing an appended glycan unit, from protic polar media, is presented. The results demonstrate the formation of complex hierarchical luminescent aggregates, wherein the morphologies, sizes and spherical structures were highly dependent on both the media and the Nap structure. Upon cleaving the native glycosidic bond, using an enzyme, the structure/morphology of the self-assembly of 3 in buffered solution was significantly transformed.

5.
Inorg Chem ; 56(13): 7533-7544, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28613074

RESUMO

A structure-property relationship study of neutral heteroleptic (1 and 2, [Ir(C∧N)2(L∧X)]) and homoleptic (3 and 4, fac-[Ir(C∧N)3]) Ir(III) complexes (where L∧X = anionic 2,2,6,6-tetramethylheptane-3,5-dionato-κO3,κO6 (thd) and C∧N = a cyclometalating ligand bearing a pentafluorosulfanyl (-SF5) electron-withdrawing group (EWG) at the C4 (HL1) and C3 (HL2) positions of the phenyl moiety) is presented. These complexes have been fully structurally characterized, including by single-crystal X-ray diffraction, and their electrochemical and optical properties have also been extensively studied. While complexes 1 ([Ir(L1)2(thd)]), 3 (Ir(L1)3), and 4 (Ir(L2)3) exhibit irreversible first reduction waves based on the pentafluorosulfanyl substituent in the range of -1.71 to -1.88 V (vs SCE), complex 2 ([Ir(L2)2(thd)]) exhibits a quasi-reversible pyridineC∧N-based first reduction wave that is anodically shifted at -1.38 V. The metal + C∧N ligand oxidation waves are all quasi-reversible in the range of 1.08-1.54 V (vs SCE). The optical gap, determined from the lowest energy absorption maxima, decreases from 4 to 2 to 3 to 1, and this trend is consistent with the Hammett behavior (σm/σp with respect to the metal-carbon bond) of the -SF5 EWG. In degassed acetonitrile, for complexes 2-4, introduction of the -SF5 group produced a blue-shifted emission (λem 484-506 nm) in comparison to reference complexes [Ir(ppy)2(acac)] (R1, where acac = acetylacetonato) (λem 528 nm in MeCN), [Ir(CF3-ppy) (acac)] (R3, where CF3-ppyH = 2-(4-(trifluoromethyl)phenyl)pyridine) (λem 522 nm in DCM), and [Ir(CF3-ppy)3] (R8) (λem 507 nm in MeCN). The emission of complex 1, in contrast, was modestly red shifted (λem 534 nm). Complexes 2 and 4, where the -SF5 EWG is substituted para to the Ir-CC∧N bond, are efficient phosphorescent emitters, with high photoluminescence quantum yields (ΦPL = 58-79% in degassed MeCN solution) and microsecond emission lifetimes (τε = 1.35-3.02 µs). Theoretical and experimental observations point toward excited states that are principally ligand centered (3LC) in nature, but with a minor metal-to-ligand charge-transfer (3MLCT) transition component, as a function of the regiochemistry of the pentafluorosulfanyl group. The 3LC character is predominant over the mixed 3CT character for complexes 1, 2, and 4, while in complex 3, there is exclusive 3LC character as demonstrated by unrestricted density functional theory (DFT) calculations. The short emission lifetimes and reasonable ΦPL values in doped thin film (5 wt % in PMMA), particularly for 4, suggest that these neutral complexes would be attractive candidate emitters in organic light-emitting diodes.

6.
Chemistry ; 21(19): 7035-8, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25808835

RESUMO

Condensation of a pyridyl-2-carbaldehyde derivative with 2-(bromoethyl)amine hydrobromide gave tetracyclic pyrido[1,2-a]pyrido[1',2':3,4]imidazo-[2,1-c]-6,7-dihydropyrazinium dications in excellent yields. Crystal structures and NOE data demonstrated the helical character of the dications, the dihedral angles between the two pyrido groups ranging from 28-45°. An intermediate in the synthesis was also characterized. A much brighter emission compared to literature helicenes has been found, with quantum yields as high as 60 % in the range of λ=460-600 nm. Preliminary cytotoxicity studies against HT-29 cancer cells demonstrated moderate-to-good activity, with IC50 values 12-30× that of cisplatin.

7.
Chemistry ; 21(52): 19128-35, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26567486

RESUMO

Two new heteroleptic iridium(III) complexes bearing an aryldiazoimidazole ligand are reported. These complexes differ structurally with respect to the protonation state of the imidazole ring, but can be independently accessed by varying the synthetic conditions. Their structures have been unequivocally confirmed by X-ray crystal structure analysis, with surprising differences in the structural parameters of the two complexes. The strongly absorbing nature of the free diazoimidazole ligand is enhanced in these iridium complexes, with the protonated cationic complex demonstrating extraordinarily strong panchromic absorption up to 700 nm. The absorption profile of the deprotonated neutral complex is blueshifted by about 100 nm and thus the interconversion between the two complexes as a function of the acidity/basicity of the environment can be readily monitored by absorption spectroscopy. Theoretical calculations revealed the origins of these markedly different absorption properties. Finally, the protonated analogue has been targeted as an acceptor material for organic photovoltaic (OPV) applications, and preliminary results are reported.

8.
Dalton Trans ; 50(10): 3479-3486, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33660719

RESUMO

A rhenium(i) naphthalimide complex [Re(CO)3(5-PAN)Cl] (Re(5-PAN); 5-PAN = 1-(1,10-phenanthroline)-4-nitro-naphthalimide) was synthesized, characterized, and evaluated as a photocatalyst for CO2 reduction. Characterization included use of MALDI-ToF mass spectrometry, FT-IR, RAMAN, 1H and 13C NMR, elemental analysis, electronic absorption and emission spectroscopy, single crystal X-ray diffraction, DFT and cyclic voltammetry. Photocatalytic (406 nm) reduction of 13CO2 to formate (H13COO) in the presence of this catalyst was tracked via13C NMR. Results support Re5-PAN (φ = 0.021) functioning as a catalyst for the reduction of CO2 (maximum turn-over 48-50 at 300 equiv. triethylamine as the sacrificial electron donor).

9.
Chem Commun (Camb) ; 55(64): 9523-9526, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31332405

RESUMO

The synthesis of a chiral bis-tridentate (1,2,3-triazol-4-yl)-picolinamide (tzpa) ligand is described and its coordination chemistry with Cu(NO3)2 and [Cu(MeCN)4]PF6 is explored in the crystalline phase as well as in solution. Chiral [2 × 2] tetranuclear square grid complexes [Cu4(H21)4](NO3)8 and [Cu4(H1)4](PF6)4 were observed, and crystallographically analysed, these being linkage isomers with N4O2 and N5O coordination spheres, respectively. These come about by an unusual in situ amide deprotonation and coordination, which accompanies a CuI → CuII oxidation process.

10.
Dalton Trans ; 48(26): 9639-9653, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30874276

RESUMO

A series of six novel [Ir(C^N)2(N^N)](PF6) complexes (C^N is one of two cyclometalating ligands: 2-phenyl-4-(2,4,6-trimethylphenyl)pyridine, MesppyH, or 2-(napthalen-1-yl)-4-(2,4,6-trimethylphenyl)pyridine, MesnpyH; N^N denotes one of four neutral diamine ligands: 4,4'-di-tert-butyl-2,2'-bipyridine, dtbubpy, 1H,1'H-2,2'-bibenzimiazole, H2bibenz, 1,1'-(α,α'-o-xylylene)-2,2'-bibenzimidazole, o-xylbibenz or 2,2'-biquinoline, biq) were synthesised and their structural, electrochemical and photophysical properties comprehensively characterised. The more conjugated MesnpyH ligands confer a red-shift in the emission compared to MesppyH but maintain high photoluminescence quantum yields due to the steric bulk of the mesityl groups. The H2bibenz and o-xylbibenz ligands are shown to be electronically indistinct to dtbubpy but give complexes with higher quantum yields than analogous complexes bearing dtbubpy. In particular, the rigidity of the o-xylbibenz ligand, combined with the steric bulk of the MesnpyH C^N ligands, gives a red-emitting complex 4 (λPL = 586, 623 nm) with a very high photoluminescence quantum yield (ΦPL = 44%) for an emitter in that region of the visible spectrum. These results suggest that employing these ligands is a viable strategy for designing more efficient orange-red emitters for use in a variety of photophysical applications.

11.
Chem Commun (Camb) ; 53(5): 807-826, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27892552

RESUMO

This perspective illustrates our approach in the design of heteroleptic cationic iridium(iii) complexes for optoelectronic applications, especially as emitters in electroluminescent devices. We discuss changes in the photophysical properties of the complexes as a consequence of modification of the electronics of either the cyclometalating (C^N) or the ancillary (N^N) ligands. We then broach the impact on these properties as a function of modification of the structure of both types of ligands. We explain trends in the optoelectronic behaviour of the complexes using a combination of rationally designed structure-property relationship studies and theoretical modelling that serves to inform subsequent ligand design. However, we have found cases where the design paradigms do not always hold true. Nevertheless, all these studies contribute to the lessons we have learned in the design of heteroleptic cationic phosphorescent iridium(iii) complexes.

12.
Top Curr Chem (Cham) ; 374(4): 36, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27573388

RESUMO

Cationic iridium(III) complexes represent the single largest class of emitters used in light emitting electrochemical cells (LEECs). In this chapter, we highlight the state-of-the-art emitters in terms of efficiency and stability in LEEC devices, highlighting blue, green, yellow/orange, red and white devices, and provide an outlook to the future of LEECs.

13.
J Mater Chem C Mater ; 4(17): 3726-3737, 2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-27398216

RESUMO

Combining a sterically bulky, electron-deficient 2-(2,4-difluorophenyl)-4-(2,4,6-trimethylphenyl)pyridine (dFMesppy) cyclometalating C∧N ligand with an electron rich, highly rigidified 1,1'-(α,α'-o-xylylene)-2,2'-biimidazole (o-xylbiim) N∧N ligand gives an iridium complex, [Ir(dFMesppy)2(o-xylbiim)](PF6), that achieves extraordinarily bright blue emission (ΦPL = 90%; λmax = 459 nm in MeCN) for a cationic iridium complex. This complex is compared with two reference complexes bearing 4,4'-di-tert-butyl-2,2'-bipyridine, and solution-processed organic light emitting diodes (OLEDs) have been fabricated from these materials.

14.
Chem Sci ; 6(5): 3248-3261, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142691

RESUMO

We report the first examples of highly luminescent di-coordinated Pd(0) complexes. Five complexes of the form [Pd(L)(L')] were synthesized, where L = IPr, SIPr or IPr* NHC ligands and L' = PCy3, or IPr and SIPr NHC ligands. The photophysical properties of these complexes were determined in degassed toluene solution and in the solid state and contrasted to the poorly luminescent reference complex [Pd(IPr)(PPh3)]. Organic light-emitting diodes were successfully fabricated but attained external quantum efficiencies of between 0.3 and 0.7%.

15.
Faraday Discuss ; 174: 165-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485834

RESUMO

Herein we report the synthesis and optoelectronic characterisation of three deep blue-emitting cationic iridium complexes, of the form [Ir(dFppy)(2)(N^N)]PF(6), bearing biimidazole-type N^N ancillary ligands (dFppyH = 2-(2,4-difluorophenyl)pyridine). Complex 1 contains the parent biimidazole, biim, while 2 contains a dimethylated analog, dMebiim, and 3 contains an ortho-xylyl-tethered biimidzole, o-xylbiim. We explore a strategy of tethering the biimidazole in order to rigidify the complex and increase the photoluminescent quantum yield, culminating in deep blue (λ(max): 457 nm in MeOH at 298 K) ligand-centered emission with a very high photoluminescent quantum yield of 68% and microsecond emission lifetime. Density functional theory calculations elucidate the origin of such disparate excited state kinetics across this series, especially in light of virtually identical optoelectronic properties observed for these compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA