Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 163(7): 1692-701, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687357

RESUMO

Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.


Assuntos
Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Vesículas Transportadoras/ultraestrutura , Animais , Capsídeo/ultraestrutura , Chlorocebus aethiops , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/metabolismo , Membrana Nuclear/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dímeros de Pirimidina , Espalhamento a Baixo Ângulo , Vesículas Transportadoras/metabolismo , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo
2.
Biomacromolecules ; 18(5): 1574-1581, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28398743

RESUMO

The immobilization of bovine serum albumins (BSA) onto cationic spherical polyelectrolyte brushes (SPB) consisting of a solid polystyrene (PS) core and a densely grafted poly(2-aminoethyl methacrylate hydrochloride) (PAEMH) shell was studied by small-angle X-ray scattering (SAXS). The observed dynamics of adsorption of BSA onto SPB by time-resolved SAXS can be divided into two stages. In the first stage (tens of milliseconds), the added proteins as in-between bridge instantaneously caused the aggregation of SPB. Then BSA penetrated into the brush layer driven by electrostatic attractions, and reached equilibrium in the second stage (tens of seconds). The amount of BSA immobilized onto brush layer reached the maximum when pH was increased to about 6.1 and BSA concentration to 10 g/L. The cationic SPB were confirmed to provide stronger adsorption capacity for BSA compared to anionic ones.


Assuntos
Proteínas Imobilizadas/química , Polieletrólitos/química , Cátions/química , Metacrilatos/química , Espalhamento a Baixo Ângulo , Soroalbumina Bovina/química , Raios X
3.
J Nanobiotechnology ; 14: 15, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26939942

RESUMO

BACKGROUND: Recent advances in nanoparticle design have generated new possibilities for nano-biotechnology and nano-medicine. Here we used cryo-soft X-ray tomography (cryo-SXT) to collect comprehensive three-dimensional (3D) data to characterise the interaction of superparamagnetic iron oxide nanoparticles (SPION) with a breast cancer cell line. RESULTS: We incubated MCF-7 (a human breast cancer cell line) from 0 to 24 h with SPION (15 nm average diameter, coated with dimercaptosuccinic acid), a system that has been studied previously using various microscopy and bulk techniques. This system facilitates the validation and contextualization of the new 3D data acquired using the cryo-SXT-based approach. After vitrification, samples tested by correlative cryo-epifluorescent microscopy showed SPION accumulation in acidic vesicles related to the endocytic pathway. Microscopy grids bearing MCF-7 cells were then analysed by cryo-SXT to generate whole cell volume 3D maps. Cryo-SXT is an emerging technique that benefits from high X-ray penetration into the biological material to image close-to-native vitrified cells at nanometric resolution with no chemical fixation or staining agents. This unique possibility of obtaining 3D information from whole cells allows quantitative statistical analysis of SPION-containing vesicle (SCV) accumulation inside cells, including vesicle number and size, distances between vesicles, and their distance from the nucleus. CONCLUSIONS: Correlation between fluorescent microscopy, cryo-SXT and transmission electron microscopy allowed us to identify SCV and to generate 3D data for statistical analysis of SPION:cell interaction. This study supports continuous transfer of the internalized SPION from the plasma membrane to an accumulation area near the cell nucleus. Statistical analysis showed SCV increase in number and size concomitant with longer incubation times, and therefore an increase in their accumulated volume within the cell. This cumulative effect expands the accumulation area and cell organelles such as mitochondria are consequently displaced to the periphery. Our 3D cryo-SXT approach demonstrates that a comprehensive quantitative description of SPION:cell interaction is possible, which will serve as a basis for metal-based nanoparticle design and for selection of those best suited for hyperthermia treatment, drug delivery and image diagnosis in nanobiomedicine.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Células/metabolismo , Nanopartículas/metabolismo , Linhagem Celular Tumoral , Criopreservação/métodos , Humanos , Imageamento Tridimensional/métodos , Células MCF-7 , Microscopia de Fluorescência/métodos , Tomografia por Raios X/métodos
4.
Langmuir ; 31(1): 83-9, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25496214

RESUMO

Microgel-covered interfaces, e.g., in emulsions, have attracted much interest lately. Different imaging techniques have been used to image these interfaces, either flat or curved, to investigate their properties and appearance. Techniques such as cryogenic scanning electron microscopy (cryo-SEM) and confocal microscopy have provided valuable insight into microgel-covered systems but still have some disadvantages such as part of the microgels being trapped in vitrified liquid or the need for fluorescent markers. Some of these disadvantages can be overcome by using transmission X-ray microscopy (TXM), which has the advantage of allowing the investigation of adsorbed and free microgels simultaneously. We used TXM to acquire tomographic image series of microgel-covered droplets and calculated 3D reconstructions from these image stacks. As a result, we could show that microgels deform anisotropically and penetrate the oil droplets in the hydrated state. Additionally, 3D reconstruction gives an idea of the arrangement of microgels adsorbed to oil droplets and reveals that droplet stabilization is possible without full coverage of the interface with polymer segments.

5.
Small ; 10(21): 4340-51, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24990430

RESUMO

Mesenchymal stromal cells (MSCs) are promising candidates in regenerative cell-therapies. However, optimizing their number and route of delivery remains a critical issue, which can be addressed by monitoring the MSCs' bio-distribution in vivo using super-paramagnetic iron-oxide nanoparticles (SPIONs). In this study, amino-polyvinyl alcohol coated (A-PVA) SPIONs are introduced for cell-labeling and visualization by magnetic resonance imaging (MRI) of human MSCs. Size and surface charge of A-PVA-SPIONs differ depending on their solvent. Under MSC-labeling conditions, A-PVA-SPIONs have a hydrodynamic diameter of 42 ± 2 nm and a negative Zeta potential of 25 ± 5 mV, which enable efficient internalization by MSCs without the need to use transfection agents. Transmission X-ray microscopy localizes A-PVA-SPIONs in intracellular vesicles and as cytosolic single particles. After identifying non-interfering cell-assays and determining the delivered and cellular dose, in addition to the administered dose, A-PVA-SPIONs are found to be non-toxic to MSCs and non-destructive towards their multi-lineage differentiation potential. Surprisingly, MSC migration is increased. In MRI, A-PVA-SPION-labeled MSCs are successfully visualized in vitro and in vivo. In conclusion, A-PVA-SPIONs have no unfavorable influences on MSCs, although it becomes evident how sensitive their functional behavior is towards SPION-labeling. And A-PVA-SPIONs allow MSC-monitoring in vivo.


Assuntos
Rastreamento de Células/métodos , Dextranos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Álcool de Polivinil/química , Idoso , Animais , Diferenciação Celular , Rastreamento de Células/instrumentação , Células Cultivadas , Meios de Contraste/química , Dextranos/síntese química , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos Lew
6.
Nano Lett ; 13(2): 824-8, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23360082

RESUMO

The electronic structure of individual hybrid particles was studied by nanoscale near-edge X-ray absorption spectromicroscopy. The colloidal particles consist of a solid polystyrene core and a cross-linked poly-N-(isopropylacrylamide) shell with embedded crystalline titanium dioxide (TiO(2)) nanoparticles (d = 6 ± 3 nm). The TiO(2) particles are generated in the carrier network by a sol-gel process at room temperature. The hybrid particles were imaged with photon energy steps of 0.1 eV in their hydrated environment with a cryo transmission X-ray microscope (TXM) at the Ti L(2,3)-edge. By analyzing the image stacks, the obtained near-edge X-ray absorption fine structure (NEXAFS) spectra of our individual hybrid particles show clearly that our synthesis generates TiO(2) in the anastase phase. Additionally, our spectromicroscopy method permits the determination of the density distribution of TiO(2) in single carrier particles. Therefore, NEXAFS spectroscopy combined with TXM presents a unique method to get in-depth insight into the electronic structure of hybrid materials.


Assuntos
Coloides/química , Elétrons , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Espectroscopia por Absorção de Raios X , Raios X
7.
Lab Chip ; 22(6): 1214-1230, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35170605

RESUMO

This paper presents an X-ray compatible microfluidic platform for in situ characterization of chemical reactions at synchrotron light sources. We demonstrate easy to implement techniques to probe reacting solutions as they first come into contact, and study the very first milliseconds of their reaction in real-time through X-ray absorption spectroscopy (XAS). The devices use polydimethylsiloxane (PDMS) microfluidic channels sandwiched between ultrathin, X-ray transparent silicon nitride observation windows and rigid substrates. The new approach has three key advantages: i) owing to the assembly techniques employed, the devices are suitable for both high energy and tender (1-5 keV) X-rays; ii) they can operate in a vacuum environment (a must for low energy X-rays) and iii) they are robust enough to survive a full 8 hour shift of continuous scanning with a micro-focused beam, providing higher spatial and thus greater time resolution than previous studies. The combination of these opens new opportunities for in situ studies. This has so far not been possible with Kapton or glass-based flow cells due to increased attenuation of the low energy beam passing through these materials. The devices provide a well-defined mixing region to collect spatial maps of spatially stable concentration profiles, and XAS point spectra to elucidate the chemical structure and characterize the chemical reactions. The versatility of the approach is demonstrated through in situ XAS measurements on the mixing of two reactants in a microfluidic laminar flow device, as well as a segmented droplet based system for time resolved analysis.


Assuntos
Microfluídica , Síncrotrons , Dispositivos Lab-On-A-Chip , Raios X
8.
Phys Chem Chem Phys ; 13(39): 17599-605, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21892474

RESUMO

We present an investigation of ß-lactoglobulin adsorption onto spherical polyelectrolyte brushes (SPBs) by small angle X-ray scattering (SAXS). The SPB consists of a polystyrene core onto which long chains of poly(styrene sulfonate) are grafted. The amount and the distribution of proteins adsorbed in the brush layer at low ionic strength can be derived from SAXS. The analysis of the SAXS data reveals additionally that some of the protein molecules form aggregates of about six monomers in the adsorbed state. Furthermore, the position and the amount of slightly bound protein can be detected by the combination of the SAXS results and the SPB loading after extensive ultrafiltration. The total amount of adsorbed protein is compared to data derived from isothermal titration calorimetry. The comparison of both sets of data demonstrates that the protein molecules in the inner layers of the spherical polyelectrolyte brush are firmly bound. Proteins located in the outer layers are only weakly bound and can be washed out by prolonged ultrafiltration.


Assuntos
Lactoglobulinas/química , Poliestirenos/química , Eletrólitos/química , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Nat Commun ; 12(1): 1769, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741973

RESUMO

In viscous, organic-rich aerosol particles containing iron, sunlight may induce anoxic conditions that stabilize reactive oxygen species (ROS) and carbon-centered radicals (CCRs). In laboratory experiments, we show mass loss, iron oxidation and radical formation and release from photoactive organic particles containing iron. Our results reveal a range of temperature and relative humidity, including ambient conditions, that control ROS build up and CCR persistence in photochemically active, viscous organic particles. We find that radicals can attain high concentrations, altering aerosol chemistry and exacerbating health hazards of aerosol exposure. Our physicochemical kinetic model confirmed these results, implying that oxygen does not penetrate such particles due to the combined effects of fast reaction and slow diffusion near the particle surface, allowing photochemically-produced radicals to be effectively trapped in an anoxic organic matrix.

10.
J Am Chem Soc ; 132(9): 3159-63, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20143809

RESUMO

The thermodynamics and the driving forces of the adsorption of beta-lactoglobulin on spherical polyelectrolyte brushes (SPB) are investigated by isothermal titration calorimetry (ITC). The SPB consist of a polystyrene core onto which long chains of poly(styrene sulfonate) are grafted. Adsorption isotherms are obtained from measurements by ITC. The analysis by ITC shows clearly that the adsorption process is solely driven by entropy while DeltaH > 0. This finding is in accordance with the proposed mechanism of counterion release: Patches of positive charges on the surface of the proteins become multivalent counterions of the polyelectrolyte chains, thereby releasing the counterions of the protein and the polyelectrolyte. A simple statistical-mechanical model fully corroborates the proposed mechanism. The present analysis shows clearly the fundamental importance of counterion release for protein adsorption on charged interfaces and charged polymeric layers.


Assuntos
Lactoglobulinas/química , Poliestirenos/química , Termodinâmica , Adsorção , Calorimetria , Eletroquímica , Eletrólitos/química , Propriedades de Superfície
11.
Anal Biochem ; 378(2): 184-9, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18440294

RESUMO

The activity of adsorbed beta-glucosidase onto spherical polyelectrolyte brushes (SPBs) is investigated by UV-Vis spectroscopy and isothermal titration calorimetry (ITC). By comparing the results of these two methods, we demonstrate that ITC is a precise method for the study of the activity of immobilized enzymes. The carrier particles used for immobilization here consist of a polystyrene core onto which poly(acrylic acid) chains are grafted. High amounts of enzyme can be immobilized in the brush layer at low ionic strength by the polyelectrolyte-mediated protein adsorption (PMPA). Analysis of the activity of beta-glucosidase was done in terms of Michaelis-Menten kinetics. Moreover, the enzymatic activity of immobilized enzyme is studied by ITC using cellobiose as substrate. All data show that ITC is a general method for the study of the activity of immobilized enzymes.


Assuntos
Calorimetria/métodos , Enzimas Imobilizadas/metabolismo , Prunus/enzimologia , beta-Glucosidase/metabolismo , Animais , Bovinos , Cinética , Poliestirenos/metabolismo , Soroalbumina Bovina/metabolismo , Espectrofotometria Ultravioleta , Especificidade por Substrato , Titulometria
12.
Sci Adv ; 4(1): eaao6283, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29387793

RESUMO

Mechanisms of CaCO3 nucleation from solutions that depend on multistage pathways and the existence of species far more complex than simple ions or ion pairs have recently been proposed. Herein, we provide a tightly coupled theoretical and experimental study on the pathways that precede the initial stages of CaCO3 nucleation. Starting from molecular simulations, we succeed in correctly predicting bulk thermodynamic quantities and experimental data, including equilibrium constants, titration curves, and detailed x-ray absorption spectra taken from the supersaturated CaCO3 solutions. The picture that emerges is in complete agreement with classical views of cluster populations in which ions and ion pairs dominate, with the concomitant free energy landscapes following classical nucleation theory.

13.
Sci Rep ; 6: 34879, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748356

RESUMO

Mast cells play an important role in allergic responses. During activation, these cells undergo degranulation, a process by which various kinds of mediators stored in the granules are released. Granule homeostasis in mast cells has mainly been studied by electron microscopy (EM), where the fine structures of subcellular organelles are partially destroyed during sample preparation. Migration and fusion of granules have not been studied in detail in three dimensions (3D) in unmodified samples. Here, we utilized soft X-ray tomography (SXT) coupled with fluorescence microscopy to study the detailed structures of organelles during mast cell activation. We observed granule fission, granule fusion to plasma membranes, and small vesicles budding from granules. We also detected lipid droplets, which became larger and more numerous as mast cells were activated. We observed dramatic morphological changes of mitochondria in activated mast cells and 3D-reconstruction revealed the highly folded cristae inner membrane, features of functionally active mitochondria. We also observed giant vesicles containing granules, mitochondria, and lipid droplets, which we designated as granule-containing vesicles (GCVs) and verified their presence by EM in samples prepared by cryo-substitution, albeit with a less clear morphology. Thus, our studies using SXT provide significant insights into mast cell activation at the organelle level.


Assuntos
Anafilaxia/imunologia , Grânulos Citoplasmáticos/ultraestrutura , Mastócitos/ultraestrutura , Mitocôndrias/ultraestrutura , Tomografia por Raios X/métodos , Animais , Degranulação Celular , Linhagem Celular , Espaço Intracelular , Microscopia Eletrônica , Nanotecnologia , Ratos
14.
Sci Rep ; 5: 17729, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631608

RESUMO

In order to take full advantage of novel functional materials in the next generation of sensorial devices scalable processes for their fabrication and utilization are of great importance. Also understanding the processes lending the properties to those materials is essential. Among the most sought-after sensor applications are low-cost, highly sensitive and selective metal oxide based gas sensors. Yet, the surface reactions responsible for provoking a change in the electrical behavior of gas sensitive layers are insufficiently comprehended. Here, we have used near-edge x-ray absorption fine structure spectroscopy in combination with x-ray microscopy (NEXAFS-TXM) for ex-situ measurements, in order to reveal the hydrogen sulfide induced processes at the surface of copper oxide nanoparticles, which are ultimately responsible for triggering a percolation phase transition. For the first time these measurements allow the imaging of trace gas induced reactions and the effect they have on the chemical composition of the metal oxide surface and bulk. This makes the new technique suitable for elucidating adsorption processes in-situ and under real operating conditions.

15.
Ultramicroscopy ; 143: 77-87, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24238600

RESUMO

Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from 'hotspots' on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities.


Assuntos
Endossomos/ultraestrutura , Microscopia de Fluorescência/métodos , Fagossomos/ultraestrutura , Tomografia por Raios X/métodos , Animais , Linhagem Celular , Fluorescência , Ouro/química , Células HEK293 , Humanos , Imageamento Tridimensional/métodos , Mamíferos/fisiologia
16.
Ultramicroscopy ; 146: 46-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24973653

RESUMO

Correlative fluorescence and soft X-ray cryo-microscopy/tomography on flat sample holders is perfectly suited to study the uncompromised physiological status of adherent cells at its best possible preservation by imaging after fast cryo-immobilization. To understand the mechanism by which herpesviruses induce nucleoplasmic reticulum, i.e. invaginations of the nuclear envelope, during their egress from the host cell nucleus, morphologically similar structures found in laminopathies and after chemical induction were investigated as a potentially more easily accessible model system. For example, anti-retroviral protease inhibitors like Saquinavir also induce invaginations of the nuclear membranes. With the help of newly designed multimodal nanoparticles as alignment and correlation markers, and by optimizing fluorescence cryo-microscopy data acquisition, an elaborate three-dimensional network of nucleoplasmic reticulum was demonstrated in nuclei of Saquinavir-treated rabbit kidney cells expressing a fluorescently labeled inner nuclear membrane protein. In part of the protease inhibitor-treated samples, nuclei exhibited dramatic ultrastructural changes indicative of programmed cell death/apoptosis. This unexpected observation highlights another unique feature of soft X-ray microscopy, i.e. high absorption contrast information not relying on labeled cellular components, at a 3D resolution of approximately 40 nm (half-pitch) and through a sample thickness of several micrometers. These properties make it a valuable part of the cell biology imaging toolbox to visualize the cellular ultrastructure in its completeness.


Assuntos
Apoptose/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Microscopia Crioeletrônica/métodos , Nanopartículas/administração & dosagem , Nanotecnologia/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Núcleo Celular/efeitos dos fármacos , Inibidores da Protease de HIV/toxicidade , Coelhos , Saquinavir/toxicidade
18.
J Colloid Interface Sci ; 355(1): 115-23, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21211805

RESUMO

The fabrication of heteroaggregates comprising inorganic and organic nanoparticles of different sizes is reported. Control over the assembly of nanoscale functional building units is of great significance to many practical applications. Joining together different spherical nanoparticles in a defined manner allows control over the shape of the composites. If two types of constituents are chosen that differ in size, the surfaces of the composites exhibit two specific radii of curvature, yielding aggregates of dual surface roughness. Moreover, if the constituents consist of different materials, the resulting heteroaggregates feature both compositional and interfacial anisotropy, offering unprecedented perspectives for custom-tailored colloids. This study describes a two-step approach towards such designer particles. At first, amine-modified polystyrene particles with 154 nm diameter were assembled into clusters of well-defined configurations. Onto these, oppositely charged inorganic particles with diameters of only a few nanometres were deposited by direct uptake from solution, resulting in numerous functional entities all over the surface of the polymer clusters. Despite the fact that oppositely charged constituents are brought together, charge reversal by uptake of nanoparticles allows for stable suspensions of heterocomposites. Hence, the possibility to assemble particles into nanoscale heterocomposites with full control over shape, composition, and surface roughness is demonstrated.

19.
Phys Rev Lett ; 100(15): 158301, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18518159

RESUMO

We present the first time-resolved investigation of motions of proteins in densely grafted layers of spherical polyelectrolyte brushes. Using small-angle x-ray scattering combined with rapid stopped-flow mixing, we followed the uptake of bovine serum albumin by poly(acrylic acid) layer with high spatial and temporal resolution. We find that the total amount of adsorbed protein scales with time as t(1/4). This subdiffusive behavior is explained on the basis of directed motion of the protein along the polyelectrolyte chains.


Assuntos
Resinas Acrílicas/química , Poliestirenos/química , Soroalbumina Bovina/química , Adsorção , Cinética , Concentração Osmolar , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
20.
Biomacromolecules ; 8(11): 3674-81, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17929973

RESUMO

The adsorption of bovine hemoglobin (BHb) onto colloidal spherical polyelectrolyte brushes (SPBs) is studied by a combination of small-angle X-ray scattering (SAXS) and Fourier transform infrared spectroscopy (FTIR). The SPBs consist of a polystyrene core onto which long chains of poly(styrene sulfonic acid) are grafted. Hemoglobin is a tetrameric protein that disassembles at low pH's and high ionic strengths. The protein is embedded into the brush layer composed of strong polyacids. Thus, the protein is subjected to a pH and ionic strength that largely differs from the bulk solution. At low ionic strengths up to 650 mg of BHb per gram of SPB could be immobilized. The analysis of the particles loaded with protein by SAXS demonstrates that the protein enters deeply into the brush. A large fraction of hemoglobin is bound at the surface of the polystyrene core. We attribute this strong affinity to hydrophobic interactions between the protein and the polystyrene core. The other protein molecules are closely correlated with the polyelectrolyte chains. The secondary structure of the protein within the brush was studied by FTIR spectroscopy. The analysis revealed a significant disturbance of the secondary structure of the tetrameric protein. The content of alpha-helix is significantly lowered compared to the native conformation. Moreover, there is an increase of beta-sheet structure as compared to the native conformation. The partial loss of the structural integrity of the hydrophobic protein is due to hydrophobic interactions with the hydrophobic polystyrene core. Hydrophobic interactions with the phenyl groups of the poly(styrene sulfonate) chains influence the secondary structure as well. These findings indicate that changes of the secondary structure play a role in the uptake of hemoglobin into the poly(styrene sulfonate) brushes.


Assuntos
Hemoglobinas/química , Adsorção , Animais , Bovinos , Eletrólitos , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA