Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(28): 14260-14269, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235572

RESUMO

Piezo channels are mechanically activated ion channels that confer mechanosensitivity to a variety of different cell types. Piezos oligomerize as propeller-shaped homotrimers that are thought to locally curve the membrane into spherical domes that project into the cell. While several studies have identified domains and amino acids that control important properties such as ion permeability and selectivity as well as inactivation kinetics and voltage sensitivity, only little is known about intraprotein interactions that govern mechanosensitivity-the most unique feature of PIEZOs. Here we used site-directed mutagenesis and patch-clamp recordings to investigate the mechanogating mechanism of PIEZO2. We demonstrate that charged amino acids at the interface between the beam domain-i.e., a long α-helix that protrudes from the intracellular side of the "propeller" blade toward the inner vestibule of the channel-and the C-terminal domain (CTD) as well as hydrophobic interactions between the highly conserved Y2807 of the CTD and pore-lining helices are required to ensure normal mechanosensitivity of PIEZO2. Moreover, single-channel recordings indicate that a previously unrecognized intrinsically disordered domain located adjacent to the beam acts as a cytosolic plug that limits ion permeation possibly by clogging the inner vestibule of both PIEZO1 and PIEZO2. Thus, we have identified several intraprotein domain interfaces that control the mechanical activation of PIEZO1 and PIEZO2 and which might thus serve as promising targets for drugs that modulate the mechanosensitivity of Piezo channels.

2.
Angew Chem Int Ed Engl ; 58(8): 2341-2344, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30569539

RESUMO

Optical monitoring of neuronal voltage using fluorescent indicators is a powerful approach for the interrogation of the cellular and molecular logic of the nervous system. Herein, a semisynthetic tethered voltage indicator (STeVI1) based upon nile red is described that displays voltage sensitivity when genetically targeted to neuronal membranes. This environmentally sensitive probe allows for wash-free imaging and faithfully detects supra- and sub-threshold activity in neurons.


Assuntos
Corantes Fluorescentes/química , Neurônios/metabolismo , Imagem Óptica , Oxazinas/química , Células HEK293 , Humanos , Estrutura Molecular , Neurônios/citologia
3.
Nat Methods ; 12(2): 137-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25486061

RESUMO

Fluorescent protein reporters have become the mainstay for tracing cellular circuitry in vivo but are limited in their versatility. Here we generated Cre-dependent reporter mice expressing the Snap-tag to target synthetic indicators to cells. Snap-tag labeling worked efficiently and selectively in vivo, allowing for both the manipulation of behavior and monitoring of cellular fluorescence from the same reporter.


Assuntos
Corantes Fluorescentes/química , Técnicas de Introdução de Genes/métodos , Genes Reporter , Integrases , Proteínas Recombinantes de Fusão/química , Animais , Proteínas da Matriz Extracelular/genética , Integrases/genética , Camundongos Transgênicos , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/genética , Proteína-Lisina 6-Oxidase/genética , RNA não Traduzido/genética , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem
4.
EMBO Rep ; 17(4): 585-600, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26929027

RESUMO

Itch, the unpleasant sensation that elicits a desire to scratch, is mediated by specific subtypes of cutaneous sensory neuron. Here, we identify a subpopulation of itch-sensing neurons based on their expression of the receptor tyrosine kinase Ret. We apply flow cytometry to isolate Ret-positive neurons from dorsal root ganglia and detected a distinct population marked by low levels of Ret and absence of isolectin B4 binding. We determine the transcriptional profile of these neurons and demonstrate that they express neuropeptides such as somatostatin (Sst), the NGF receptor TrkA, and multiple transcripts associated with itch. We validate the selective expression of Sst using an Sst-Cre driver line and ablated these neurons by generating mice in which the diphtheria toxin receptor is conditionally expressed from the sensory neuron-specific Avil locus. Sst-Cre::Avil(iDTR) mice display normal nociceptive responses to thermal and mechanical stimuli. However, scratching behavior evoked by interleukin-31 (IL-31) or agonist at the 5HT1F receptor is significantly reduced. Our data provide a molecular signature for a subpopulation of neurons activated by multiple pruritogens.


Assuntos
Gânglios Espinais/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Prurido/genética , Células Receptoras Sensoriais/metabolismo , Somatostatina/genética , Animais , Perfilação da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Hibridização In Situ , Lectinas/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Neurônios Aferentes/metabolismo , Neuropeptídeos/metabolismo , Receptor de Fator de Crescimento Neural/genética
5.
J Neurosci ; 33(17): 7299-307, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616538

RESUMO

Inhibitory interneurons of the spinal dorsal horn play critical roles in the processing of noxious and innocuous sensory information. They form a family of morphologically and functionally diverse neurons that likely fall into distinct subtypes. Traditional classifications rely mainly on differences in dendritic tree morphology and firing patterns. Although useful, these markers are not comprehensive and cannot be used to drive specific genetic manipulations targeted at defined subsets of neurons. Here, we have used genome-wide expression profiling of spinal dorsal horns of wild-type mice and of two strains of transcription factor-deficient mice (Ptf1a(-/-) and Ascl1/Mash1(-/-) mice) to identify new genetic markers for specific subsets of dorsal horn inhibitory interneurons. Ptf1a(-/-) mice lack all inhibitory interneurons in the dorsal horn, whereas only the late-born inhibitory interneurons are missing in Ascl1(-/-) mice. We found 30 genes that were significantly downregulated in the dorsal horn of Ptf1a(-/-) mice. Twenty-one of those also showed reduced expression in Ascl1(-/-) mice. In situ hybridization analyses of all 30 genes identified four genes with primarily non-overlapping expression patterns in the dorsal horn. Three genes, pDyn coding the neuropeptide dynorphin, Kcnip2 encoding a potassium channel associated protein, and the nuclear receptor encoding gene Rorb, were expressed in Ascl1-dependent subpopulations of the superficial dorsal horn. The fourth gene, Tfap2b, encoding a transcription factor, is expressed mainly in a Ascl1-independent subpopulation of the deep dorsal horn. Functional experiments in isolated spinal cords showed that the Ascl1-dependent inhibitory interneurons are key players of nociceptive reflex plasticity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Interneurônios/metabolismo , Plasticidade Neuronal/fisiologia , Nociceptividade/fisiologia , Células do Corno Posterior/metabolismo , Reflexo/fisiologia , Fatores de Transcrição/deficiência , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores/metabolismo , Feminino , Estudo de Associação Genômica Ampla/métodos , Camundongos , Camundongos Knockout , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
6.
Pain ; 165(6): 1336-1347, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739766

RESUMO

ABSTRACT: Evidence from previous studies supports the concept that spinal cord injury (SCI)-induced neuropathic pain (NP) has its neural roots in the peripheral nervous system. There is uncertainty about how and to which degree mechanoreceptors contribute. Sensorimotor activation-based interventions (eg, treadmill training) have been shown to reduce NP after experimental SCI, suggesting transmission of pain-alleviating signals through mechanoreceptors. The aim of the present study was to understand the contribution of mechanoreceptors with respect to mechanical allodynia in a moderate mouse contusion SCI model. After genetic ablation of tropomyosin receptor kinase B expressing mechanoreceptors before SCI, mechanical allodynia was reduced. The identical genetic ablation after SCI did not yield any change in pain behavior. Peptidergic nociceptor sprouting into lamina III/IV below injury level as a consequence of SCI was not altered by either mechanoreceptor ablation. However, skin-nerve preparations of contusion SCI mice 7 days after injury yielded hyperexcitability in nociceptors, not in mechanoreceptors, which makes a substantial direct contribution of mechanoreceptors to NP maintenance unlikely. Complementing animal data, quantitative sensory testing in human SCI subjects indicated reduced mechanical pain thresholds, whereas the mechanical detection threshold was not altered. Taken together, early mechanoreceptor ablation modulates pain behavior, most likely through indirect mechanisms. Hyperexcitable nociceptors seem to be the main drivers of SCI-induced NP. Future studies need to focus on injury-derived factors triggering early-onset nociceptor hyperexcitability, which could serve as targets for more effective therapeutic interventions.


Assuntos
Modelos Animais de Doenças , Hiperalgesia , Mecanorreceptores , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Camundongos , Hiperalgesia/fisiopatologia , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiologia , Masculino , Humanos , Limiar da Dor/fisiologia , Feminino , Medição da Dor , Camundongos Transgênicos , Neuralgia/etiologia , Neuralgia/metabolismo , Neuralgia/fisiopatologia
7.
J Physiol ; 591(1): 185-201, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23027824

RESUMO

The capacity to sense temperature is essential for the survival of all animals. At the molecular level, ion channels belonging to the transient receptor potential (TRP) family of channels function as temperature sensors in animals across several phyla. TRP channels are opened directly by changes in temperature and show pronounced sensitivity at their activation range. To determine how temperature activates these channels, we analysed channels belonging to the TRPA family, which detect heat in insects and cold in mammals. By constructing chimeric proteins consisting of human and Drosophila TRPA1 channels, we mapped regions that regulate thermal activation and identified residues in the pore helix that invert temperature sensitivity of TRPA1. From analysis of individual channels we defined the gating reaction of Drosophila TRPA1 and determined how mutagenesis alters the energy landscape for channel opening. Our results reveal specific molecular requirements for thermal activation of TRPA1 and provide mechanistic insight into this process.


Assuntos
Canais de Cálcio/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Cátion TRPC/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Canais de Cálcio/química , Drosophila , Proteínas de Drosophila/química , Temperatura Alta , Humanos , Canais Iônicos , Mutação , Proteínas do Tecido Nervoso/química , Porosidade , Canal de Cátion TRPA1 , Canais de Cátion TRPC/química , Canais de Potencial de Receptor Transitório/química
8.
Nature ; 445(7124): 206-9, 2007 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-17167420

RESUMO

Touch and mechanical pain are first detected at our largest sensory surface, the skin. The cell bodies of sensory neurons that detect such stimuli are located in the dorsal root ganglia, and subtypes of these neurons are specialized to detect specific modalities of mechanical stimuli. Molecules have been identified that are necessary for mechanosensation in invertebrates but so far not in mammals. In Caenorhabditis elegans, mec-2 is one of several genes identified in a screen for touch insensitivity and encodes an integral membrane protein with a stomatin homology domain. Here we show that about 35% of skin mechanoreceptors do not respond to mechanical stimuli in mice with a mutation in stomatin-like protein 3 (SLP3, also called Stoml3), a mammalian mec-2 homologue that is expressed in sensory neurons. In addition, mechanosensitive ion channels found in many sensory neurons do not function without SLP3. Tactile-driven behaviours are also impaired in SLP3 mutant mice, including touch-evoked pain caused by neuropathic injury. SLP3 is therefore indispensable for the function of a subset of cutaneous mechanoreceptors, and our data support the idea that this protein is an essential subunit of a mammalian mechanotransducer.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Tato/fisiologia , Canais Iônicos Sensíveis a Ácido , Vias Aferentes , Animais , Condutividade Elétrica , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Masculino , Mecanorreceptores/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Ratos , Canais de Sódio/metabolismo
9.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36571579

RESUMO

Functional membrane proteins in the plasma membrane are suggested to have specific membrane environments that play important roles to maintain and regulate their function. However, the local membrane environments of membrane proteins remain largely unexplored due to the lack of available techniques. We have developed a method to probe the local membrane environment surrounding membrane proteins in the plasma membrane by covalently tethering a solvatochromic, environment-sensitive dye, Nile Red, to a GPI-anchored protein and the insulin receptor through a flexible linker. The fluidity of the membrane environment of the GPI-anchored protein depended upon the saturation of the acyl chains of the lipid anchor. The local environment of the insulin receptor was distinct from the average plasma membrane fluidity and was quite dynamic and heterogeneous. Upon addition of insulin, the local membrane environment surrounding the receptor specifically increased in fluidity in an insulin receptor-kinase dependent manner and on the distance between the dye and the receptor.


Assuntos
Membrana Celular , Proteínas de Membrana , Receptor de Insulina , Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas Ligadas por GPI/metabolismo , Proteínas de Membrana/metabolismo , Receptor de Insulina/metabolismo , Técnicas de Sonda Molecular
10.
Nat Commun ; 14(1): 1899, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019973

RESUMO

Mechanically silent nociceptors are sensory afferents that are insensitive to noxious mechanical stimuli under normal conditions but become sensitized to such stimuli during inflammation. Using RNA-sequencing and quantitative RT-PCR we demonstrate that inflammation upregulates the expression of the transmembrane protein TMEM100 in silent nociceptors and electrophysiology revealed that over-expression of TMEM100 is required and sufficient to un-silence silent nociceptors in mice. Moreover, we show that mice lacking TMEM100 do not develop secondary mechanical hypersensitivity-i.e., pain hypersensitivity that spreads beyond the site of inflammation-during knee joint inflammation and that AAV-mediated overexpression of TMEM100 in articular afferents in the absence of inflammation is sufficient to induce mechanical hypersensitivity in remote skin regions without causing knee joint pain. Thus, our work identifies TMEM100 as a key regulator of silent nociceptor un-silencing and reveals a physiological role for this hitherto enigmatic afferent subclass in triggering spatially remote secondary mechanical hypersensitivity during inflammation.


Assuntos
Nociceptores , Dor , Animais , Camundongos , Inflamação/metabolismo , Articulação do Joelho , Nociceptores/metabolismo , Dor/metabolismo , Pele/metabolismo
11.
Mol Pain ; 8: 81, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23116256

RESUMO

BACKGROUND: Peripheral nerve injuries often trigger a hypersensitivity to tactile stimulation. Behavioural studies demonstrated efficient and side effect-free analgesia mediated by opioid receptors on peripheral sensory neurons. However, mechanistic approaches addressing such opioid properties in painful neuropathies are lacking. Here we investigated whether opioids can directly inhibit primary afferent neuron transmission of mechanical stimuli in neuropathy. We analysed the mechanical thresholds, the firing rates and response latencies of sensory fibres to mechanical stimulation of their cutaneous receptive fields. RESULTS: Two weeks following a chronic constriction injury of the saphenous nerve, mice developed a profound mechanical hypersensitivity in the paw innervated by the damaged nerve. Using an in vitro skin-nerve preparation we found no changes in the mechanical thresholds and latencies of sensory fibres from injured nerves. The firing rates to mechanical stimulation were unchanged or reduced following injury. Importantly, µ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly5]-ol-enkephalin (DAMGO) significantly elevated the mechanical thresholds of nociceptive Aδ and C fibres. Furthermore, DAMGO substantially diminished the mechanically evoked discharges of C nociceptors in injured nerves. These effects were blocked by DAMGO washout and pre-treatment with the selective µ-opioid receptor antagonist Cys2-Tyr3-Orn5-Pen7-amide. DAMGO did not alter the responses of sensory fibres in uninjured nerves. CONCLUSIONS: Our findings suggest that behaviourally manifested neuropathy-induced mechanosensitivity does not require a sensitised state of cutaneous nociceptors in damaged nerves. Yet, nerve injury renders nociceptors sensitive to opioids. Prevention of action potential generation or propagation in nociceptors might represent a cellular mechanism underlying peripheral opioid-mediated alleviation of mechanical hypersensitivity in neuropathy.


Assuntos
Neuralgia/metabolismo , Nociceptores/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Receptores Opioides mu/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/genética , Neurônios Aferentes/metabolismo , Traumatismos dos Nervos Periféricos/genética , Receptores Opioides mu/genética
12.
Cell Rep ; 38(3): 110260, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045284

RESUMO

In their Matters Arising article, McMullan et al. (2022) offer alternative explanations for the phenotypes we observed upon stimulation and ablation of TrkCCreERT2-positive neurons in mice. Their interpretations are focused on two aspects: first, whether the vasoconstriction we observed upon activation of TrkCCreERT2 neurons is really mediated by TrkC/TH-positive neurons, or whether it might stem from stimulation of somatic nociceptors that also express TrkC; and second, whether the lethality observed after ablation of TrkCCreERT2 neurons might be a result of ablation of vagal afferents and not TrkC/TH neurons located in the spinal ganglia. Central to both of these concerns is the expression and recombination efficiency of the TrkCCreERT2 transgene in these other cell types. This Matters Arising Response paper addresses the McMullan et al. (2022) Matters Arising paper, published concurrently in Cell Reports.


Assuntos
Gânglios Espinais , Neurônios , Animais , Homeostase , Camundongos , Receptores Proteína Tirosina Quinases , Recombinação Genética
13.
Mol Pain ; 7: 66, 2011 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-21906401

RESUMO

Progress in the somatosensory field has been restricted by the limited number of genetic tools available to study gene function in peripheral sensory neurons. Here we generated a Cre-driver mouse line that expresses Cre-recombinase from the locus of the sensory neuron specific gene Advillin. These mice displayed almost exclusive Cre-mediated recombination in all peripheral sensory neurons. As such, the Advillin-Cre-driver line will be a powerful tool for targeting peripheral neurons in future investigations.


Assuntos
Técnicas Genéticas , Integrases/metabolismo , Proteínas dos Microfilamentos/metabolismo , Envelhecimento/metabolismo , Animais , Comportamento Animal , Embrião de Mamíferos/metabolismo , Dosagem de Genes/genética , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nociceptividade/fisiologia , Células Receptoras Sensoriais/metabolismo , Coloração e Rotulagem , beta-Galactosidase/metabolismo
14.
PLoS Biol ; 6(1): e13, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18232734

RESUMO

In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes "normal" mammalian nociception.


Assuntos
Hiperalgesia/induzido quimicamente , Ratos-Toupeira , Nociceptores/efeitos dos fármacos , Limiar da Dor/fisiologia , Dor/fisiopatologia , Ácidos/farmacologia , Animais , Capsaicina/farmacologia , Inflamação , Neurônios Aferentes , Dor/psicologia , Medição da Dor , Células do Corno Posterior
15.
Nat Neurosci ; 10(3): 277-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17259981

RESUMO

TRPA1 is an ion channel expressed by nociceptors and activated by irritant compounds such as mustard oil. The endogenous function of TRPA1 has remained unclear, a fact highlighted by ongoing debate over its potential role as a sensor of noxious cold. Here we show that intracellular Ca(2+) activates human TRPA1 via an EF-hand domain and that cold sensitivity occurs indirectly (and nonphysiologically) through increased [Ca(2+)](i) during cooling in heterologous systems.


Assuntos
Canais de Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Analgésicos não Narcóticos/farmacologia , Carbacol/farmacologia , Linhagem Celular , Temperatura Baixa , Diagnóstico por Imagem/métodos , Relação Dose-Resposta a Droga , Motivos EF Hand/fisiologia , Humanos , Líquido Intracelular/metabolismo , Proteínas Luminescentes/metabolismo , Mutagênese/fisiologia , Técnicas de Patch-Clamp/métodos , Canal de Cátion TRPA1 , Transfecção/métodos , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/fisiologia , Canais de Potencial de Receptor Transitório/efeitos da radiação
16.
Cell Rep ; 35(9): 109191, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077727

RESUMO

The vasculature is innervated by a network of peripheral afferents that sense and regulate blood flow. Here, we describe a system of non-peptidergic sensory neurons with cell bodies in the spinal ganglia that regulate vascular tone in the distal arteries. We identify a population of mechanosensitive neurons, marked by tropomyosin receptor kinase C (TrkC) and tyrosine hydroxylase in the dorsal root ganglia, which projects to blood vessels. Local stimulation of TrkC neurons decreases vessel diameter and blood flow, whereas systemic activation increases systolic blood pressure and heart rate variability via the sympathetic nervous system. Ablation of the neurons provokes variability in local blood flow, leading to a reduction in systolic blood pressure, increased heart rate variability, and ultimately lethality within 48 h. Thus, a population of TrkC+ sensory neurons forms part of a sensory-feedback mechanism that maintains cardiovascular homeostasis through the autonomic nervous system.


Assuntos
Pressão Sanguínea/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Comportamento Animal , Fluoresceína/metabolismo , Gânglios Espinais/fisiologia , Frequência Cardíaca/fisiologia , Camundongos Transgênicos , Receptor trkC/metabolismo
17.
Arthritis Rheumatol ; 72(10): 1749-1758, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32418284

RESUMO

OBJECTIVE: Joint pain is the major clinical symptom of arthritis that affects millions of people. Controlling the excitability of knee-innervating dorsal root ganglion (DRG) neurons (knee neurons) could potentially provide pain relief. We undertook this study to evaluate whether the newly engineered adeno-associated virus (AAV) serotype, AAV-PHP.S, can deliver functional artificial receptors to control knee neuron excitability following intraarticular knee injection. METHODS: The AAV-PHP.S virus, packaged with dTomato fluorescent protein and either excitatory (Gq ) or inhibitory (Gi ) designer receptors exclusively activated by designer drugs (DREADDs), was injected into the knee joints of adult mice. Labeling of DRG neurons with AAV-PHP.S from the knee was evaluated using immunohistochemistry. The functionality of Gq - and Gi -DREADDs was evaluated using whole-cell patch clamp electrophysiology on acutely cultured DRG neurons. Pain behavior in mice was assessed using a digging assay, dynamic weight bearing, and rotarod performance, before and after intraperitoneal administration of the DREADD activator, Compound 21. RESULTS: We showed that AAV-PHP.S can deliver functional genes into ~7% of lumbar DRG neurons when injected into the knee joint in a similar manner to the well-established retrograde tracer, fast blue. Short-term activation of AAV-PHP.S-delivered Gq -DREADD increased excitability of knee neurons in vitro (P = 0.02 by unpaired t-test), without inducing overt pain in mice when activated in vivo. By contrast, in vivo Gi -DREADD activation alleviated digging deficits induced by Freund's complete adjuvant-mediated knee inflammation (P = 0.0002 by repeated-measures analysis of variance [ANOVA] followed by Holm-Sidak multiple comparisons test). A concomitant decrease in knee neuron excitability was observed in vitro (P = 0.005 by ANOVA followed by Holm-Sidak multiple comparisons test). CONCLUSION: We describe an AAV-mediated chemogenetic approach to specifically control joint pain, which may be utilized in translational arthritic pain research.


Assuntos
Gânglios Espinais/metabolismo , Terapia Genética/métodos , Inflamação/terapia , Neurônios/metabolismo , Manejo da Dor/métodos , Dor/metabolismo , Animais , Dependovirus , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Articulação do Joelho/metabolismo , Camundongos
18.
J Cell Biol ; 159(3): 489-98, 2002 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-12417579

RESUMO

Previous in vitro studies using cGMP or cAMP revealed a cross-talk between signaling mechanisms activated by axonal guidance receptors. However, the molecular elements modulated by cyclic nucleotides in growth cones are not well understood. cGMP is a second messenger with several distinct targets including cGMP-dependent protein kinase I (cGKI). Our studies indicated that the alpha isoform of cGKI is predominantly expressed by sensory axons during developmental stages, whereas most spinal cord neurons are negative for cGKI. Analysis of the trajectories of axons within the spinal cord showed a longitudinal guidance defect of sensory axons within the developing dorsal root entry zone in the absence of cGKI. Consequently, in cGKI-deficient mice, fewer axons grow within the dorsal funiculus of the spinal cord, and lamina-specific innervation, especially by nociceptive sensory neurons, is strongly reduced as deduced from anti-trkA staining. These axon guidance defects in cGKI-deficient mice lead to a substantial impairment in nociceptive flexion reflexes, shown using electrophysiology. In vitro studies revealed that activation of cGKI in embryonic dorsal root ganglia counteracts semaphorin 3A-induced growth cone collapse. Our studies therefore reveal that cGMP signaling is important for axonal growth in vivo and in vitro.


Assuntos
Axônios/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Neurônios Aferentes/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Potenciais de Ação/fisiologia , Animais , Técnicas de Cultura , GMP Cíclico/análogos & derivados , Proteínas Quinases Dependentes de GMP Cíclico/genética , Estimulação Elétrica , Embrião de Mamíferos/fisiologia , Gânglios Espinais/anatomia & histologia , Gânglios Espinais/metabolismo , Genótipo , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Neurônios Aferentes/citologia , Neurônios Aferentes/efeitos dos fármacos , Nociceptores , Isoformas de Proteínas , Semaforina-3A/farmacologia , Medula Espinal/anatomia & histologia , Medula Espinal/metabolismo
19.
Nat Protoc ; 14(11): 3101-3125, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31605098

RESUMO

Antibody-based diagnostic and therapeutic agents play a substantial role in medicine, especially in cancer management. A variety of chemical, genetic and enzymatic site-specific conjugation methods have been developed for equipping antibodies with effector molecules to generate homogeneous antibody conjugates with tailored properties. However, most of these methods are relatively complicated and expensive and require several reaction steps. Self-labeling proteins such as the SNAP-tag are an innovative solution for addressing these challenges. The SNAP-tag is a modified version of the human DNA repair enzyme alkylguanine-DNA alkyltransferase (AGT), which reacts specifically with O(6)-benzylguanine (BG)-modified molecules via irreversible transfer of an alkyl group to a cysteine residue. It provides a simple, controlled and robust site-specific method for labeling antibodies with different synthetic small effector molecules. Fusing a SNAP-tag to recombinant antibodies allows efficient conjugation of BG-containing substrates by autocatalytic, irreversible transfer of the alkyl group to a cysteine residue in the enzyme's active site under physiological conditions and with a 1:1 stoichiometry. This protocol describes how to generate site-specific SNAP-tag single-chain antibody fragment (scFv) conjugates with different types of BG-modified effector molecules. A specific example is included for the design and production of an scFv-photosensitizer conjugate and its characterization as an immuno-theranostic agent. This protocol includes DNA sequences encoding scFV-SNAP-tag fusion proteins and outlines strategies for expression, purification and testing of the resulting scFv-SNAP-tag-based immuno-conjugates. All experiments can be performed by a graduate-level researcher with basic molecular biology skills within an 8-week time frame.


Assuntos
Imunoconjugados/química , Anticorpos de Cadeia Única/química , Linhagem Celular , Corantes Fluorescentes/química , Humanos , O(6)-Metilguanina-DNA Metiltransferase/química , Proteínas Recombinantes/química , Coloração e Rotulagem
20.
Nat Biomed Eng ; 3(2): 114-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30944432

RESUMO

Itch-a major symptom of many chronic skin diseases-can exacerbate inflammation by provoking scratching and subsequent skin damage. Here, we show that activation, via near infrared illumination, of a phototoxic agent that selectively targets itch-sensing cells can reduce itch-associated behaviours in mice. We generated a SNAP-tagged interleukin-31 (IL-31) ligand derivative (IL-31K138A-SNAP) that selectively binds receptors on itch-associated cells, without evoking IL-31-receptor signalling or scratching, and conjugated it to the photosensitizer IRDye 700DX phthalocyanine. Subcutaneous injection of IL-31K138A-SNAP-IR700 in mice followed by near infrared illumination resulted in the long-term reversal of the scratching behaviour evoked by the pruritogenic IL-31, an effect that was associated with the selective retraction of itch-sensing neurons in the skin. We also show that a topical preparation of IL-31K138A-SNAP-IR700 reversed the behavioural and dermatological indicators of disease in mouse models of atopic dermatitis and of the genetic skin disease familial primary localized cutaneous amyloidosis. Targeted photoablation may enable itch control for the treatment of inflammatory skin diseases.


Assuntos
Comportamento Animal , Epiderme/inervação , Interleucinas/uso terapêutico , Luz , Prurido/patologia , Prurido/terapia , Células Receptoras Sensoriais/patologia , Doença Aguda , Amiloidose Familiar/patologia , Animais , Movimento Celular , Células Dendríticas/patologia , Dermatite Atópica/patologia , Dermatite Atópica/prevenção & controle , Modelos Animais de Doenças , Epiderme/patologia , Indóis/química , Queratinócitos/patologia , Camundongos Endogâmicos C57BL , Psoríase/patologia , Dermatopatias Genéticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA