Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Br J Cancer ; 117(4): 503-512, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28677687

RESUMO

BACKGROUND: Tumour-specific radiosensitising treatments may enhance the efficacy of radiotherapy without exacerbating side effects. In this study we determined the radiation response following depletion or inhibition of TOPK, a mitogen-activated protein kinase kinase family Ser/Thr protein kinase that is upregulated in many cancers. METHODS: Radiation response was studied in a wide range of cancer cell lines and normal cells using colony formation assays. The effect on cell cycle progression was assessed and the relationship between TOPK expression and therapeutic efficacy was studied in a cohort of 128 prostate cancer patients treated with radical radiotherapy. RESULTS: TOPK knockdown did not alter radiation response in normal tissues, but significantly enhanced radiosensitivity in cancer cells. This result was recapitulated in TOPK knockout cells and with the TOPK inhibitor, OTS964. TOPK depletion altered the G1/S transition and G2/M arrest in response to radiation. Furthermore, TOPK depletion increased chromosomal aberrations, multinucleation and apoptotic cell death after irradiation. These results suggest a possible role for TOPK in the radiation-induced DNA damage checkpoints. These findings have clinical relevance, as elevated TOPK protein expression was associated with poorer clinical outcomes in prostate cancer patients treated with radical radiotherapy. CONCLUSIONS: This study demonstrates that TOPK disruption may cause tumour-specific radiosensitisation in multiple different tumour types.


Assuntos
Pontos de Checagem do Ciclo Celular , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Recidiva Local de Neoplasia/metabolismo , Neoplasias da Próstata/radioterapia , Tolerância a Radiação , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/efeitos da radiação , Aberrações Cromossômicas/efeitos dos fármacos , Aberrações Cromossômicas/efeitos da radiação , Técnicas de Silenciamento de Genes , Células HCT116 , Células HeLa , Humanos , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Neoplasias da Próstata/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Taxa de Sobrevida
2.
Toxicol Appl Pharmacol ; 277(3): 288-97, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24726431

RESUMO

Mutations to the p53 gene are common in UV-exposed keratinocytes and contribute to apoptotic resistance in skin cancer. P53-dependent activity is modulated, in part, by a complex, self-limiting feedback loop imposed by miR-34a-mediated regulation of the lysine deacetylase, SIRT1. Expression of numerous microRNAs is dysregulated in squamous and basal cell carcinomas; however the contribution of specific microRNAs to the pathogenesis of skin cancer remains untested. Through use of RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors, this study explored the influence of p53 mutational status, SIRT1 activity and miR-34a levels on apoptotic sensitivity in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. SIRT1 and p53 are overexpressed in p53-mutated keratinocytes, whilst miR-34a levels are 90% less in HaCaT cells. HaCaTs have impaired responses to p53/SIRT1/miR-34a axis manipulation which enhanced survival during exposure to the chemotherapeutic agent, camptothecin. Inhibition of SIRT1 activity in this cell line increased p53 acetylation and doubled camptothecin-induced cell death. Our results demonstrate that p53 mutations increase apoptotic resistance in keratinocytes by interfering with miR-34a-mediated regulation of SIRT1 expression. Thus, SIRT1 inhibitors may have a therapeutic potential for overcoming apoptotic resistance during skin cancer treatment.


Assuntos
Apoptose/fisiologia , Queratinócitos/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Oligonucleotídeos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Survivina , Proteína Supressora de Tumor p53/genética
3.
Toxicol Appl Pharmacol ; 281(1): 136-45, 2014 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-25281835

RESUMO

Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5µM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5µM; >5weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity.


Assuntos
Arsênio/toxicidade , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Sirtuína 1/biossíntese , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Sirtuína 1/genética
4.
Cell Death Differ ; 28(4): 1333-1346, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33168956

RESUMO

T-LAK-originated protein kinase (TOPK) overexpression is a feature of multiple cancers, yet is absent from most phenotypically normal tissues. As such, TOPK expression profiling and the development of TOPK-targeting pharmaceutical agents have raised hopes for its future potential in the development of targeted therapeutics. Results presented in this paper confirm the value of TOPK as a potential target for the treatment of solid tumours, and demonstrate the efficacy of a TOPK inhibitor (OTS964) when used in combination with radiation treatment. Using H460 and Calu-6 lung cancer xenograft models, we show that pharmaceutical inhibition of TOPK potentiates the efficacy of fractionated irradiation. Furthermore, we provide in vitro evidence that TOPK plays a hitherto unknown role during S phase, showing that TOPK depletion increases fork stalling and collapse under conditions of replication stress and exogenous DNA damage. Transient knockdown of TOPK was shown to impair recovery from fork stalling and to increase the formation of replication-associated single-stranded DNA foci in H460 lung cancer cells. We also show that TOPK interacts directly with CHK1 and Cdc25c, two key players in the checkpoint signalling pathway activated after replication fork collapse. This study thus provides novel insights into the mechanism by which TOPK activity supports the survival of cancer cells, facilitating checkpoint signalling in response to replication stress and DNA damage.


Assuntos
Quinase 1 do Ponto de Checagem/efeitos dos fármacos , Neoplasias Pulmonares/radioterapia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Fosfatases cdc25/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/efeitos da radiação , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Tolerância a Radiação/genética , Transdução de Sinais , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto , Fosfatases cdc25/genética , Fosfatases cdc25/efeitos da radiação
5.
Cell Death Dis ; 9(11): 1089, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30356039

RESUMO

'Targeted' or 'biological' cancer treatments rely on differential gene expression between normal tissue and cancer, and genetic changes that render tumour cells especially sensitive to the agent being applied. Problems exist with the application of many agents as a result of damage to local tissues, tumour evolution and treatment resistance, or through systemic toxicity. Hence, there is a therapeutic need to uncover specific clinical targets which enhance the efficacy of cancer treatment whilst minimising the risk to healthy tissues. T-LAK cell-originated protein kinase (TOPK) is a MAPKK-like kinase which plays a role in cell cycle regulation and mitotic progression. As a consequence, TOPK expression is minimal in differentiated cells, although its overexpression is a pathophysiological feature of many tumours. Hence, TOPK has garnered interest as a cancer-specific biomarker and biochemical target with the potential to enhance cancer therapy whilst causing minimal harm to normal tissues. Small molecule inhibitors of TOPK have produced encouraging results as a stand-alone treatment in vitro and in vivo, and are expected to advance into clinical trials in the near future. In this review, we present the current literature pertaining to TOPK as a potential clinical target and describe the progress made in uncovering its role in tumour development. Firstly, we describe the functional role of TOPK as a pro-oncogenic kinase, followed by a discussion of its potential as a target for the treatment of cancers with high-TOPK expression. Next, we provide an overview of the current preclinical progress in TOPK inhibitor discovery and development, with respect to future adaptation for clinical use.


Assuntos
Indolizinas/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Quinolonas/uso terapêutico , Quinoxalinas/uso terapêutico , Tiofenos/uso terapêutico , Animais , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Humanos , Indolizinas/farmacologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinolonas/farmacologia , Quinoxalinas/farmacologia , Tiofenos/farmacologia , Resultado do Tratamento
6.
Cell Cycle ; 17(12): 1513-1523, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30045664

RESUMO

Cyclin-dependent kinase 1 (CDK1) orchestrates the transition from the G2 phase into mitosis and as cancer cells often display enhanced CDK1 activity, it has been proposed as a tumor specific anti-cancer target. Here we show that the effects of CDK1 inhibition are not restricted to tumor cells but can also reduce viability in non-cancer cells and sensitize them to radiation in a cell cycle dependent manner. Radiosensitization by the specific CDK1 inhibitor, RO-3306, was determined by colony formation assays in three tumor lines (HeLa, T24, SQ20B) and three non-cancer lines (HFL1, MRC-5, RPE). Initial results showed that CDK1 inhibition radiosensitized tumor cells, but did not sensitize normal fibroblasts and epithelial cells in colony formation assays despite effective inhibition of CDK1 signaling. Further investigation showed that normal cells were less sensitive to CDK1 inhibition because they remained predominantly in G1 for a prolonged period when plated in colony formation assays. In contrast, inhibiting CDK1 a day after plating, when the cells were going through G2/M phase, reduced their clonogenic survival both with and without radiation. Our finding that inhibition of CDK1 can damage normal cells in a cell cycle dependent manner indicates that targeting CDK1 in cancer patients may lead to toxicity in normal proliferating cells. Furthermore, our finding that cell cycle progression becomes easily stalled in non-cancer cells under normal culture conditions has general implications for testing anti-cancer agents in these cells.


Assuntos
Proteína Quinase CDC2/antagonistas & inibidores , Divisão Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Humanos , Transdução de Sinais/efeitos dos fármacos
7.
J Dermatol Sci ; 74(2): 142-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24548601

RESUMO

BACKGROUND: Together with p53, the NAD-dependent lysine deacetylase SIRT1 and the microRNA miR-34a form a feedback loop which self-regulates SIRT1 expression and modulates p53-dependent responses. In addition to its well-described role in mediating transcriptional responses to genotoxic stress, p53 may also regulate microRNA processing and maturation. OBJECTIVE: This study explored the functional relationship among p53, SIRT1 and miR-34a, and the influence of p53 and SIRT1 on microRNA biogenesis and maturation in primary (NHEK) and p53-mutated (HaCaT) keratinocyte cell lines. METHODS: RNAi, miRNA target site blocking oligonucleotides and small molecule inhibitors were used to modulate activity and expression of SIRT1 and p53. Changes in microRNA and mRNA were analysed by qRT-PCR and protein expression was determined by immunoblotting. RESULTS: Mature miR-34a decreased in p53-suppressed NHEK cells, whereas ablation of SIRT1 reduced the primary transcript (pri-miR-34a). When either SIRT1 expression or activity was inhibited in combination with p53 ablation, pri-miR-34a levels increased and mature miR-34a levels decreased. Under these same conditions, additional p53-regulated microRNAs (miRs 16-1/15, 145 and 107) also failed to mature. In HaCaT cells, primary microRNA transcripts for miR-16-1/15, miR-145 miR200c/141 and miRNA-107, but not miR-34a, were approximately 8-fold higher than in NHEK cells. However, the levels of mature microRNA sequences in HaCaT cells were only 1.5-2 fold higher (miR-16-1, miR-145), unchanged (miR-107) or decreased (miR-200c/141, miR-34a) compared to NHEK cells. CONCLUSIONS: Our results suggest that p53 mutations interfere with efficient microRNA biogenesis in keratinocytes, and that SIRT1 functions in combination with p53 in this process.


Assuntos
Genes p53 , Queratinócitos/metabolismo , MicroRNAs/biossíntese , Sirtuína 1/metabolismo , Células Cultivadas , Humanos , MicroRNAs/metabolismo
8.
Chem Biol Interact ; 198(1-3): 38-48, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22634503

RESUMO

Arsenic (As) is both a human carcinogen and an effective anticancer drug. These aspects of arsenic toxicity develop as a consequence of arsenic-induced oxidative stress and modifications to signal pathway activity which alter gene expression. Resveratrol (RVL) a food antioxidant found in grapes and other fruits, exhibits anti-carcinogenic properties by reducing oxidative stress and restoring signal pathway control. This study investigated the impact of RVL on arsenite [As(III)]-induced cell signalling in HaCaT keratinocytes by assaying phosphorylation status of epidermal growth factor receptor (EGFR) signalling intermediates and measuring changes in expression of Phase II and DNA repair biomarkers. As(III) exposure produced dose-dependent toxicity which was associated with increased activation of EGFR pathway intermediates, cSrc, Rac1 and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Arsenic-mediated ERK1/2 activation negatively regulated DNA polymerase beta expression and up regulated heme-oxygenase-1 at toxic concentrations. RVL treatment modulated As(III)-mediated ERK1/2 activation by shifting the balance of cSrc regulatory domain phosphorylation. These effects significantly altered the response of the EGFR pathway to growth factor-induced stimulation. Our research provides evidence that treatment with pharmacologically relevant doses of RVL influences cellular responses to As(III), largely due to RVL-mediated changes to Src and ERK1/2 activation.


Assuntos
Arsênio/farmacologia , Receptores ErbB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Sequência de Bases , Western Blotting , Linhagem Celular Transformada , Primers do DNA , Relação Dose-Resposta a Droga , Humanos , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Resveratrol , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA