Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 597(7): 1855-1872, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30730556

RESUMO

KEY POINTS: Impaired growth during fetal life can reprogramme heart development and increase the risk for long-term cardiovascular dysfunction. It is uncertain if the developmental window during which the heart is vulnerable to reprogramming as a result of inadequate nutrition extends into the postnatal period. We found that adult female mice that had been undernourished only from birth to 3 weeks of age had disproportionately smaller hearts compared to males, with thinner ventricle walls and more mononucleated cardiomyocytes. In females, but not males, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited and maximal exercise capacity was compromised. These data suggest that the developmental window during which the heart is vulnerable to reprogramming by inadequacies in nutrient intake may extend into postnatal life and such individuals could be at increased risk for a cardiac event as a result of strenuous exercise. ABSTRACT: Adults who experienced undernutrition during critical windows of development are at increased risk for cardiovascular disease. The contribution of cardiac function to this increased disease risk is uncertain. We evaluated the effect of a short episode of postnatal undernutrition on cardiovascular function in mice at the whole animal, organ, and cellular levels. Pups born to control mouse dams were suckled from birth to postnatal day (PN) 21 on dams fed either a control (20% protein) or a low protein (8% protein) isocaloric diet. After PN21 offspring were fed the same control diet until adulthood. At PN70 V̇O2,max was measured by treadmill test. At PN80 cardiac function was evaluated by echocardiography and Doppler analysis at rest and following ß-adrenergic stimulation. Isolated cardiomyocyte nucleation and Ca2+ transients (with and without ß-adrenergic stimulation) were measured at PN90. Female mice that were undernourished and then refed (PUN), unlike male mice, had disproportionately smaller hearts and their exercise capacity, cardiac diastolic function, and heart rate responsiveness to adrenergic stimulation were limited. A reduced left ventricular end diastolic volume, impaired early filling, and decreased stored energy at the beginning of diastole contributed to these impairments. Female PUN mice had more mononucleated cardiomyocytes; under resting conditions binucleated cells had a functional profile suggestive of increased basal adrenergic activation. Thus, a brief episode of early postnatal undernutrition in the mouse can produce persistent changes to cardiac structure and function that limit exercise/functional capacity and thereby increase the risk for the development of a wide variety of cardiovascular morbidities.


Assuntos
Tolerância ao Exercício , Coração/fisiologia , Miocárdio/patologia , Envelhecimento , Ração Animal , Animais , Animais Recém-Nascidos , Dieta/veterinária , Dieta com Restrição de Proteínas , Feminino , Frequência Cardíaca , Masculino , Desnutrição , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Fatores Sexuais
2.
Basic Res Cardiol ; 112(4): 34, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28478479

RESUMO

Aging is associated with increased cardiac interstitial fibrosis and diastolic dysfunction. Our previous study has shown that mesenchymal fibroblasts in the C57BL/6J (B6J) aging mouse heart acquire an inflammatory phenotype and produce higher levels of chemokines. Monocyte chemoattractant protein-1 (MCP-1) secreted by these aged fibroblasts promotes leukocyte uptake into the heart. Some of the monocytes that migrate into the heart polarize into M2a macrophages/myeloid fibroblasts. The number of activated mesenchymal fibroblasts also increases with age, and consequently, both sources of fibroblasts contribute to fibrosis. Here, we further investigate mechanisms by which inflammation influences activation of myeloid and mesenchymal fibroblasts and their collagen synthesis. We examined cardiac fibrosis and heart function in three aged mouse strains; we compared C57BL/6J (B6J) with two other strains that have reduced inflammation via different mechanisms. Aged C57BL/6N (B6N) hearts are protected from oxidative stress and fibroblasts derived from them do not develop an inflammatory phenotype. Likewise, these mice have preserved diastolic function. Aged MCP-1 null mice on the B6J background (MCP-1KO) are protected from elevated leukocyte infiltration; they develop moderate but reduced fibrosis and diastolic dysfunction. Based on these studies, we further delineated the role of resident versus monocyte-derived M2a macrophages in myeloid-dependent fibrosis and found that the number of monocyte-derived M2a (but not resident) macrophages correlates with age-related fibrosis and diastolic dysfunction. In conclusion, we have found that ROS and inflammatory mediators are necessary for activation of fibroblasts of both developmental origins, and prevention of either led to better functional outcomes.


Assuntos
Envelhecimento/patologia , Cardiomiopatias/patologia , Linhagem da Célula , Fibroblastos/patologia , Inflamação/patologia , Macrófagos/patologia , Miocárdio/patologia , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Comunicação Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Diástole , Fibroblastos/metabolismo , Fibrose , Inflamação/genética , Inflamação/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Estresse Oxidativo , Fenótipo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
3.
Sci Rep ; 11(1): 536, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436716

RESUMO

The maximum value of the first derivative of the invasively measured left ventricular (LV) pressure (+ dP/dtmax or P') is often used to quantify LV contractility, which in mice is limited to a single terminal study. Thus, determination of P' in mouse longitudinal/serial studies requires a group of mice at each desired time point resulting in "pseudo" serial measurements. Alternatively, a noninvasive surrogate for P' will allow for repeated measurements on the same group of mice, thereby minimizing physiological variability and requiring fewer animals. In this study we evaluated aortic acceleration and other parameters of aortic flow velocity as noninvasive indices of LV contractility in mice. We simultaneously measured LV pressure invasively with an intravascular pressure catheter and aortic flow velocity noninvasively with a pulsed Doppler probe in mice, at baseline and after the administration of the positive inotrope, dobutamine. Regression analysis of P' versus peak aortic velocity (vp), peak velocity squared/rise time (vp2/T), peak (+ dvp/dt or v'p) and mean (+ dvm/dt or v'm) aortic acceleration showed a high degree of association (P' versus: vp, r2 = 0.77; vp2/T, r2 = 0.86; v'p, r2 = 0.80; and v'm, r2 = 0.89). The results suggest that mean or peak aortic acceleration or the other parameters may be used as a noninvasive index of LV contractility.


Assuntos
Aorta/fisiologia , Contração Miocárdica/fisiologia , Função Ventricular Esquerda/fisiologia , Aceleração , Animais , Aorta/diagnóstico por imagem , Velocidade do Fluxo Sanguíneo , Dobutamina , Ecocardiografia Doppler de Pulso , Feminino , Masculino , Camundongos Endogâmicos C57BL , Pressão Ventricular
4.
J Gerontol A Biol Sci Med Sci ; 73(9): 1167-1177, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29538624

RESUMO

Metabolic, inflammatory, and functional changes occur in cardiovascular aging which may stem from oxidative stress and be remediable with antioxidants. Glutathione, an intracellular antioxidant, declines with aging, and supplementation with glutathione precursors, N-acetyl cysteine (NAC) and glycine (Gly), increases tissue glutathione. Thirty-month old mice were fed diets supplemented with NAC or NAC+Gly and, after 7 weeks, cardiac function and molecular studies were performed. The NAC+Gly supplementation improved diastolic function, increasing peak early filling velocity, and reducing relaxation time, left atrial volume, and left ventricle end diastolic pressure. By contrast, cardiac function did not improve with NAC alone. Both diet supplementations decreased cardiac levels of inflammatory mediators; only NAC+Gly reduced leukocyte infiltration. Several mitochondrial genes reduced with aging were upregulated in hearts by NAC+Gly diet supplementation. These Krebs cycle and oxidative phosphorylation enzymes, suggesting improved mitochondrial function, and permeabilized cardiac fibers from NAC+Gly-fed mice produced ATP from carbohydrate and fatty acid sources, whereas fibers from control old mice were less able to utilize fatty acids. Our data indicate that NAC+Gly supplementation can improve diastolic function in the old mouse and may have potential to prevent important morbidities for older people.


Assuntos
Acetilcisteína/metabolismo , Envelhecimento/fisiologia , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Dietoterapia/métodos , Suplementos Nutricionais , Glicina/metabolismo , Animais , Antioxidantes/metabolismo , Senescência Celular/fisiologia , Glutationa/metabolismo , Inflamação/metabolismo , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA